DRAFT ENVIRONMENTAL IMPACT REPORT

TECHNICAL APPENDICES VOLUME II

The Keystone Project

Prepared for: City of Santa Clarita

Prepared By:

APPENDICES: VOLUME II

Appendix 5 Geologic and Geotechnical Report, Allan E. Seward Engineering Geology, Inc. (June 2004)

Keystone Project DEIR
City of Santa Clarita
Table of Contents
Page i

APPENDIX 5

Geologic and Geotechnical Report, Allan E. Seward Engineering Geology, Inc. (June 2004)

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Geological And Geotechnical Consultants

GEOLOGIC AND GEOTECHNICAL REPORT

Review of Tentative Tract Map (Dated April 1, 2004)

Vesting Tentative Tract 60258 City of Santa Clarita, California

VOLUME I OF II

Prepared for:

Synergy, A Land and Development Company 19200 Von Karman, Suite 600 Irvine, California 92612

> Job No: 04-803S-4 Dated June 11, 2004

TABLE OF CONTENTS

VOLUME I

1.0 SCOPE OF INVESTIGATION	1
2.0 BACKGROUND	3
3.0 SITE DESCRIPTION	4
4.0 PROPOSED DEVELOPMENT	4
5.0 GEOLOGIC SETTING	5
6.0 FIELD EXPLORATIONS	5
6.1 Surface Mapping	5
6.2 Subsurface Investigations	6
6.3 Sampling Procedures	6
7.0 GENERALIZED GEOLOGIC/GEOTECHNICAL SUBSURFACE CONDITIONS	AND
SOIL PROPERTIES	7
7.1 Laboratory Program	7
7.2 Geologic Units	7
7.2.1 Saugus Formation (TQs)	7
7.2.2 Quaternary Terrace Deposits (Qt)	7
7.2.3 Quaternary Alluvium (Qal)	8
7.2.4 Slopewash (Qsw)	8
7.2.5 Residual Soil	9
7.2.6 Artificial Fill (af)	9
7.2.7 Mass Movement Deposits	9
7.3 Ground Water	10
7.3.1 Alluvial Aquifer	10
7.3.2 Perched Ground Water in the Saugus Formation Bedrock and Quaternary T	'errace
Deposits	11
7.4 Soil Compressibility and Hydroconsolidation	11
7.5 Potential Expansion of Onsite Materials	11
7.6 Potential Corrosivity of Soils	11
7.6.1 Soils Electrical Resistivity and pH	11
7.6.2 Soluble Sulfate and Chloride Content in Soils	12
7.7 Soils Shear Strength	12
7.8 Rippability	12
7.9 Sewage Disposal	12
7.10 Erosion Potential	12
7.11 Debris Flow Hazards	12
8.0 SEISMIC CONSIDERATIONS	13

Job No: 04-803S-4

Page iii

TABLE OF CONTENTS

	8.1 Introduction	. 13
	8.2 Ground Rupture	. 14
	8.3 Ground Motion	. 14
	8.4 Ground Failure	. 15
9.0	O GENERAL CONCLUSIONS AND RECOMMENDATIONS	. 15
	9.1 Feasibility of Development	. 15
	9.2 Earthworks Recommendations	. 15
	9.2.1 Introduction	. 15
	9.2.2 Site Preparation	. 16
	9.2.3 Removals and Benching	. 16
	9.2.4 Preparation of Removal Bottom Areas	. 17
	9.2.5 Dewatering During Removals	. 17
	9.2.6 Over-Excavation	. 17
	9.2.7 Fill Materials	. 18
	9.2.8 Fill Compaction	. 18
	9.2.9 Proposed Fill Slopes	. 18
	9.2.10 Proposed Cut slopes	. 20
	9.2.11 Natural Slopes	. 20
	9.2.12 Restricted Use Areas	. 21
	9.2.13 Exploratory Trench and Boring Backfill	. 22
	9.3 Oil Wells	. 23
	9.4 Drainage Control	. 23
	9.4.1 Surface Drainage and Erosion Control	. 23
	9.4.2 Subsurface Water Control	. 24
	9.5 Shrinkage, Bulking and Subsidence	. 24
	9.6 Landscaping	. 25
	9.7 Foundation and Settlement Considerations	. 25
	9.8 Excavations, Shoring and Backfill Recommendations	. 26
	9.9 Expansive Soils Considerations	. 27
	9.10 Hydroconsolidation Considerations	. 27
	9.11 Corrosivity and Chemical Attack Considerations	. 27
	9.12 Retaining Walls and Pavement Design	. 28
10	.0 18.03.100F STATEMENT (CITY OF SANTA CLARITA)	. 28
11	.0 GEOLOGIST/GEOTECHNICAL ENGINEER OF RECORD	. 28
12	.0 LIMITATIONS	. 28

Job No: 04-803S-4

Page v

TABLE OF CONTENTS

VOLUME I

Location Map	Following page 2
References	
Summary of Landslides	Table 1
Summary of Cut slopes	Table 2
Well Abandonment Records	

TABLE OF CONTENTS

APPENDIX A - SUBSURFACE LOGS

• Backhoe Trenches

T-3 thru T-39, T-42 thru T-46 (11/13/86)

T- 47 thru T-81

• Bucket-Auger Borings

B-2 thru B-14 (11/13/86)

B-15 thru B-17

• Rotary-Wash Boring

RW-1 thru RW-3

 $RW-10^{1} (4/4/03)$

• Hollow-Stem Auger Borings

HS-1 thru HS-2

HS-2 thru HS-5¹ (4/4/03)

Hand-Excavated Boring

HB-1

- Key to Symbols
- CPT Data 1 (4/4/03)

APPENDIX B - GEOTECHNICAL LABORATORY INVESTIGATION AND TEST RESULTS

APPENDIX C - LIQUEFACTION POTENTIAL ASSESSMENT AND EVALUATION OF EARTHQUAKE-INDUCED SETTLEMENTS

APPENDIX D - SEISMICITY

APPENDIX E - GENERAL SPECIFICATIONS, FIGURES

Recommended Earthwork Specifications

Recommended Specifications for Placement of Trench Backfill

Drainage and Erosion Control Recommendations

Construction Diagrams

Figures E1-E13

Minimum Foundation and Slab Recommendations for Expansive Soils

Table E1

VOLUME II

APPENDIX F - SLOPE STABILITY ANALYSES

¹ Logs from report dated 4/4/03 for Tentative Tract 53425, prepared for Newhall Land.

TABLE OF CONTENTS

APPENDIX G - MAPS AND CROSS SECTIONS

 Maps 	(In pockets)
Geologic and Geotechnical Map (1"=100')	Sheet 1
Geologic and Geotechnical Map Legend	Plate I
Geologic and Geotechnical Removal Map (1"=200")	Plate II

•	Cross Sections	(In pockets)
	Geologic Cross Sections 1-1' through 6-6'	Plate III
	Geologic Cross Sections 7-7' through 13-13'	Plate IV
	Geologic Cross Sections 14-14' through 16-16'	Plate V

Job No: 04-803S-4

Page vii

June 11, 2004 Job No: 04-803S-4

Synergy, A Land & Development Company 19200 Von Karman, Suite 600 Irvine, California 92612

Attention: Mr. Rick Doremus

Subject: GEOLOGIC AND GEOTECHNICAL REPORT

Review of Tentative Tract Map (Dated April 1, 2004)

Project: Vesting Tentative Tract 60258

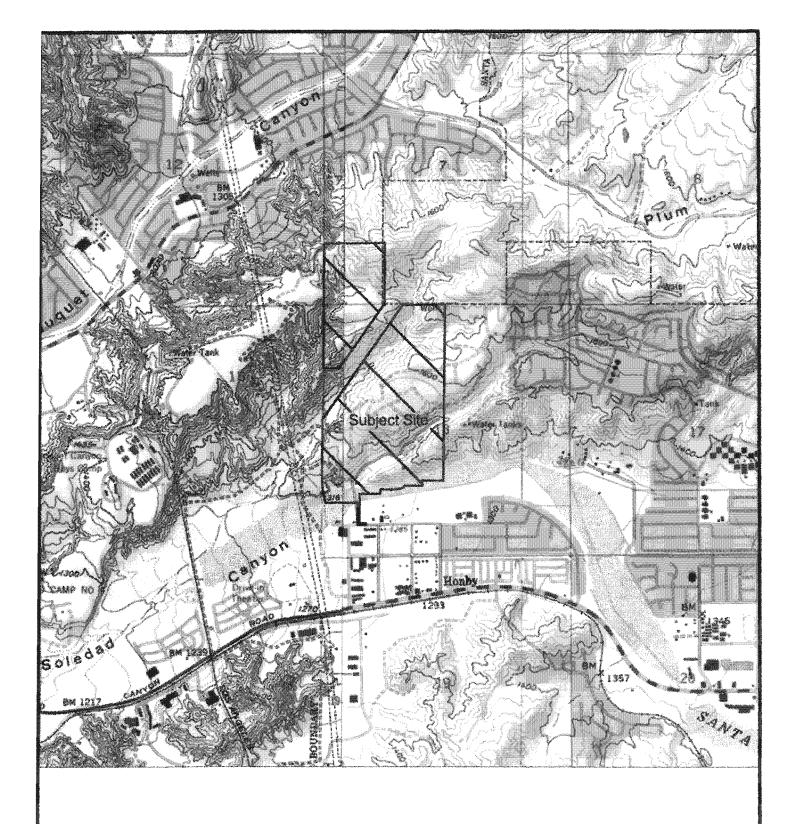
City of Santa Clarita, California

References: See at end of text

Gentlemen:

This report presents our opinions on the existing geologic and geotechnical conditions on the above-referenced tentative tract and their effects on the proposed development.

1.0 SCOPE OF INVESTIGATION


This investigation included the following:

- 1. Review of previous reports by this firm in the vicinity of the subject site.
- 2. Review of reports by others in the vicinity of the subject project (see References).
- 3. Review of Published reports and maps listed in the **References** section.
- 4. Review of the 2003 Munger Map Book, California-Alaska Oil & Gas Field.
- 5. Review of Alquist-Priolo Fault Rupture Hazard Zones in California (CDMG Special Publication 42).

6. Review of the following aerial photographs:

DATED	Рното	SCALE	AGENCY
1928	C300: 211, 212, 213	1" = 1700'±	Fairchild
11/4/52	AXJ: 3K-95, 3K-96	1" = 1600'±	USDA
8/25/80	480-163, -164	1" = 4000'±	USDA
5/9/85	1, 2, 3	1" = 550'±	ESCO
11/20/98	1-1, 1-2, 2-4, 2-5	1" = 770'±	Robert Lung & Assoc.

- 7. Coordination with the Project Supervising Civil Engineer, Sikand Engineering.
- 8. Review of the site topography and the vesting tentative tract map design, dated April 1, 2004, provided to our office in computerized format (AutoCAD), prepared by Sikand Engineering. This computerized map was used as the base for our 100-scale Geologic/Geotechnical Map, Sheet 1, and 200-scale Geologic/Geotechnical Removal Map Plate II. We make no representations regarding the accuracy of the base map.
- 9. Geologic field mapping of the site.
- 10. Coordination with Underground Service Alert.
- 11. Excavation, sampling and logging of 17 bucket-auger borings drilled to a maximum depth of 90 feet.
- 12. Excavation, sampling and logging of 81 backhoe trenches excavated to a maximum depth of 14 feet.
- 13. Excavation and sampling and logging of one hand excavated boring to a depth of 16 feet.

Source: U.S. Geological Survey Newhall and Mint Canyon Quadrangles, Dated 1952, Photorevised 1969 and Dated 1960, Photorevised 1988 Respectively

Approximate Scale: 1"=2,000'

NOTE: THIS IS NOT A SURVEY OF THE

PROPERTY

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC. Geological And Geotechnical Consultants

LOCATION MAP

Job No.: 04-803S-4 Date:

6/11/04

- 14. Laboratory testing of selected bulk and relatively undisturbed samples obtained in our subsurface investigations. Testing included dry density and moisture content of in-situ soils, percent minus #200 sieve, grain-size analysis, Atterberg limits, compaction, (modified Proctor), direct shear, hydroconsolidation, expansion index, sulfates, chlorides, pH and resistivity.
- 15. Evaluation of potential seismic ground motions at the site utilizing computer programs by Thomas Blake in accordance with current State Guidelines.
- 16. Geotechnical analysis of potential liquefaction, lateral spreading and seismic settlements based on our subsurface investigations, laboratory testing and potential seismic ground motion estimates.
- 17. Assessment of recommended grading removal depths based on weak soils, seismic settlements and proposed fill heights above the exiting ground surface.
- 18. Preparation of 16 geologic cross sections illustrating anticipated conditions for the proposed cut, fill and natural slopes.
- 19. Stability analyses of proposed cut slopes, fill slopes and natural slopes on the site.
- 20. Preparation of Geologic/Geotechnical Map, a Geologic/Geotechnical Removal Map, Location Map, drill hole logs, trench logs and pertinent figures.
- 21. Preparation of this report summarizing the results of our investigations and our conclusions and recommendations for the proposed development.

2.0 BACKGROUND

Large portions of the subject property were originally evaluated by this firm (AESEGI) in conjunction with Jeffrey S. Gordon Geotechnical Engineering (no longer in business) back in the mid eighties. Our report and Jeffrey S. Gordon Geotechnical Engineering report both dated November 13, 1986 addressed Tentative Tract 31236 which consisted of 125± acres. See references at the end of text for reviewed reports. All our data and data from Jeff Gordon Geotechnical Engineering has been incorporated into this study. Where appropriate, Jeffrey S. Gordon Geotechnical Engineering report data was incorporated into our evaluation. We have also included Geologic and Geotechnical data in the vicinity of the

Job No: 04-803S-4

intersection of Newhall Ranch Road and Golden Valley Road from our April 4, 2003 report for the adjacent undeveloped Vesting Tentative Tract 53425.

Our recent investigation for the site was performed over a period of approximately one year.

3.0 SITE DESCRIPTION

The subject site consists of 247 acres and is bounded by the Santa Clara River to the south, developed Tract 44846 to the east, undeveloped land to the north and undeveloped Vesting Tentative Tract 53425 to the west. A northeast-southwest trending Los Angeles Department of Water and Power Easement (transmission lines) divides the site into two development areas. The main channel of the Santa Clara River is located at the southern portion of the property (see Location Map). The northern portion of the property includes the elevated areas characterized by southwest to southeast trending spur ridges that descend from plateaus elevated up to about 1780 feet. Elevations on the site range from approximately 1280 feet along the Santa Clara River to 1780 feet along the northerly portion of the site. Slopes range from gentle to moderately steep with the steepest slopes existing in the side canyons and Details of the site topography are illustrated on the attached Geologic/Geotechnical Map (Sheet 1). Although much of the property appears to remain in a natural state, the property has been disturbed by past grading associated with the aggregate mining activities. Additional minor grading has also been performed for the various access roads that traverse the site. Existing buildings are present within the canyon located where the existing DWP maintenance road is located at the western portion just north of the Golden Valley Road alignment. One oil well is located at the southwestern corner of the property.

4.0 PROPOSED DEVELOPMENT

The Tentative Tract Map for this site proposes 96 lots for single family residences, 4 multifamily lots, one industrial lot and one school site lot. The remaining lots are proposed graded slope lots and natural open space lots. Infrastructure for the project includes Golden Valley Road with associated smaller roadways providing access to the development. Existing Ermine Street, located at the eastern portion of the site is proposed to attach to Golden Valley Road. An alignment for a future walkway is illustrated along the northern margin of the Santa Clara River at the southern portion of the development. It is anticipated that mass grading by cut and fill techniques will be used to create level building pads at a variety of grades between the Santa Clara River and the crest of the ascending ridges.

Job No: 04-803S-4

5.0 GEOLOGIC SETTING

The site is situated in the western Transverse Ranges geomorphic province in the western portion of the Soledad Basin just north of the San Gabriel Fault zone. Numerous east-west trending folds and reverse faults that are the result of on-going compressional tectonics characterize this region. The Soledad Basin is roughly a rectangular-shaped southwesterly plunging synclinal structure that extends between the San Gabriel fault in the Newhall-Saugus area and the San Andreas Fault near Palmdale. A thick accumulation of Cenozoic sedimentary rocks has accumulated in this structural/depositional basin and has subsequently been faulted and folded by repeated tectonic deformation.

Much of the elevated portion of the property is mantled by accumulations of ancient river channel deposits deposited on a series of successively lower benches cut in the underlying Saugus Formation bedrock by the ancestral Santa Clara River. These depositional terrace deposits exhibit crude horizontal stratification. Quaternary alluvium covers the valley floors.

The Saugus Formation bedrock below much of the property has been uplifted and deformed by past tectonic forces such that the bedding planes are dipping towards the north at angles ranging from 3 to 17 degrees. The axial trace of a roughly east-west trending syncline is present north of the tract property boundary and a axial trace for a roughly east-west trending anticline is located just south of the tract property line in the vicinity of the proposed Golden Valley Road and Newhall Ranch Road intersection. The active San Gabriel Fault is located approximately 1.5 miles south of the site. For more detailed discussion on the fault, please see **Section 8 (Seismic Considerations)** of this report.

The subject property has been affected by slope movements that range in size from small debris flows and rockfalls to large, possibly deep-seated failures. Three landslides have been mapped on the site.

6.0 FIELD EXPLORATIONS

6.1 Surface Mapping

For this report, surface geologic mapping in conjunction with aerial photo interpretations was undertaken by personnel from Allan E. Seward Engineering Geology Inc. (AESEGI) using the proposed 100-scale Tentative Map as the base map. We also reviewed all our previous geologic/geotechnical data and reports by others in the vicinity of the project.

Job No: 04-803S-4

6.2 Subsurface Investigations

Our subsurface explorations included logging of rotary-wash, hollow-stem-auger, bucket-auger, hand excavated borings and trenches. Valley Well Drilling performed the rotary-wash drill holes. Tri-Valley Drilling excavated the bucket-auger drill holes and Quality Construction dug the hand-excavated boring, and D.E. Eddings excavated the trenches. The drill holes and trenches were logged and sampled by AESEGI personnel. Copies of all of our drill holes and trench logs are presented in **Appendix A**. The locations of the drill holes, trenches are shown on the **Geologic/Geotechnical Map (Sheet 1)**.

The drill hole logs included in **Appendix A** represent our interpretation of field data prepared for each boring by our geologic/engineering staff at the time of drilling, along with refinements based on inspection and laboratory test results. Unit boundaries shown in the graphic log column of our rotary-wash and hollow-stem-auger drill hole logs are approximate and may represent gradual transitions.

6.3 Sampling Procedures

California-Drive (relatively undisturbed ring samples) and Standard Penetration Test (SPT) samples were obtained in the exploratory drill and hand excavated holes at various depths (see logs in **Appendix A**). Recovered soil samples were sealed in plastic containers and brought to our laboratory for further classification and testing.

Bulk (disturbed) samples of the near surface soils and bedrock were obtained from cuttings developed during excavation of the exploratory drill holes and trenches. The bulk samples were collected for classification and testing purposes and represent a mixture of soils within the noted depths.

Job No: 04-803S-4

7.0 GENERALIZED GEOLOGIC/GEOTECHNICAL SUBSURFACE CONDITIONS AND SOIL PROPERTIES

7.1 Laboratory Program

After visual and tactile classification in the field, the soil samples were brought to our laboratory. The soil classifications were checked in accordance with the Unified Soils Classification System. The field logs were reviewed to assess which samples would be analyzed or tested further. The results of the field investigation and the laboratory tests were used as the basis for our analyses and recommendations presented in this report. Laboratory test results are presented in **Appendix B**.

7.2 Geologic Units

A general description of geologic units, including bedrock, terrace deposits, alluvium, slopewash, landslides, and artificial fill are presented below. Distribution of these units is shown on the Geologic/Geotechnical map.

7.2.1 Saugus Formation (TQs)

The bedrock encountered consists of sedimentary rocks of the late Pliocene to Pleistocene Saugus Formation. This section contains fluvial and transitional lithologies of the lower Saugus Formation, including light-gray sandstone and conglomerate, greenish-gray siltstone, silty sandstone and reddish-brown and brown sandy mudstone and mudstone. Low strength clay beds can be present within the reddish-brown mudstone units and are generally the result of original deposition. These clay layers were **not** encountered during our subsurface exploration for the site. The Saugus Formation is typically moderately indurated.

7.2.2 Quaternary Terrace Deposits (Qt)

At least three levels of Quaternary Terrace Deposits are present on the subject site. The contacts are very gradational and at the southerly portion of the site the Terrace Deposits contact is concealed by the presence of artificial fill (see Geologic/Geotechnical Map). These deposits consist primarily of poorly to well-bedded, light-gray to yellowish-orange sand, conglomerate and sandy silts. Large boulders up to approximately 4 feet in diameter occur throughout the terrace deposits

Job No: 04-803S-4

but are generally concentrated at the basal contact. These deposits are typically friable to poorly indurated and are typically weathered to a depth of 5 to 8 feet. Bedding within the Terrace Deposits is generally horizontal to sub-horizontal and is typically non-continuous.

7.2.3 Quaternary Alluvium (Qal)

Recent river-channel deposits are present in the lower elevations of the property, largely underlying the immediate modern drainage and major tributaries of the Santa Clara River (see Geologic/Geotechnical Map). Based on the boring data obtained for the project, the alluvial deposits consist of unconsolidated interbeds of poorly graded sand, silty sand with gravels and boulders. The conditions of the alluvial soils present in each noted area are summarized below.

Alluvial areas in the vicinity of the proposed school site were explored by rotary wash borings RW-1, RW-2 and RW-3. The granular alluvial soils were found to predominantly range from medium dense to very dense with lenses of loose granular soils from the recommended removal depths up to 36 feet.

The alluvial area in the vicinity of hollow-stem auger borings HS-1 and HS-2 and hand boring HB-1 consist of interbeds of poorly graded sand with silt and gravel and silty sand which are medium dense to very dense.

The alluvium deposits have a dry densities ranging from 112 pcf to 144 pcf with moisture ranging from 1.3 to 21.2 percent.

7.2.4 Slopewash (Qsw)

Swales and side-canyons adjacent to the main drainage of the Santa Clara River commonly contain loose debris consisting of poorly sorted sand, silt and bedrock fragments. Igneous boulders and cobbles were encountered at locations where the Quaternary Terrace Deposits are present within or above the swabs on side canyons. This material has accumulated via daily surface wash and periodic debris flows and is present above levels where they are incorporated and reworked by modern stream flow. They are generally poorly consolidated. The maximum thickness of Slopewash encountered in our exploratory excavations was 14 feet. Slopewash has been noted

Job No: 04-803S-4

on the geologic logs and is indicated on the **Geologic/Geotechnical Map** where it is estimated to be greater than 4 feet in thickness.

7.2.5 Residual Soil

Ungraded areas of the site are mantled by surface soils consisting of moderate- to yellowish-brown and yellowish-gray silty sand with scattered pebbles. This unit is noted on our geologic logs, but is not shown on the Geologic/Geotechnical Map.

7.2.6 Artificial Fill (af)

Existing non-compacted artificial fill on the property ranges from minor spill fills generated during past grading of minor roads to large fill areas associated with the past aggregate mining activities associated with the Fred Furnival gravel pit operations during the early 1950's (see Geologic/Geotechnical Map). Most of this fill associated with the past aggregate mining operations has been placed at the southerly portion of the property in the vicinity of the proposed school site. Within these fills are concentrations of cobbles and boulders within a matrix of silty sand, clayey sand, poorly graded sand and gravels. The artificial fills have dry densities ranging from 100 to 120 pcf with moistures ranging from 10.5 to 15.3 percent. In addition, fill is loose to very dense. In proposed fill areas, all artificial fill impacting the proposed development will be entirely removed prior to placement of compacted/certified fill material. If artificial fill is present below proposed cut grade elevations, it should be completely removed and replaced with certified engineered fill.

7.2.7 Mass Movement Deposits

7.2.7.1 Landslides (Qls)

Three landslides are present on the subject property, however they do not encroach into the proposed development areas but are located above the proposed trail/walkway at the southeastern portion of the site (see Geologic/Geotechnical Map). These landslides are typically translational type of failures within the Saugus Formation and Terrace Deposits. The landslides typically consist of highly fractured rock resting above a low strength slip surface. Voids created by dilation of the bedrock (grabens) are commonly backfilled with rock debris and colluvial material. Landslides were identified based on examination of field

Job No: 04-803S-4

exposures and suggestive geomorphic features observed on aerial photographs and on topographic base map and confirmed via field explorations. Recommended mitigation measures for each landslide are discussed in the Landslide Summary (Table 1) located after the references.

7.3 Ground Water

Ground water beneath the project can be grouped into two categories: 1) ground water contained in the recent alluvium; and 2) ground water perched above low permeability layers in the Saugus Formation and the Quaternary Terrace Deposits.

7.3.1 Alluvial Aquifer

Historic ground water levels for the alluvium were interpolated for the site based on records from ground water wells in the immediate area as well as from ground water contours by Robson (1972) and water levels observed in exploratory excavations by this firm. These data indicate that historic ground water levels have risen to within 3.3 to 24.8 feet of the existing ground surface along the margins of the Santa Clara River. Since the site is elevated above the Santa Clara River it is conservatively estimated that the historic high ground water elevation was five feet below the existing elevation of the alluvial ground surface.

In the vicinity of the proposed school site, ground water was encountered in all of our rotary-wash borings at depths ranging from 6 to 27 feet and was at the surface within the adjacent canyon drainage. This water is present due to the presence of a storm drain outlet located up-canyon off site from the proposed school site.

With the exception of the observed surface water noted above, no active surface seeps or springs were observed during the recent field mapping of the site.

Recommended removal depths in the alluvium may encounter ground water within the alluvial canyon at the locations of the Rotary wash borings RW-1, RW-2 and RW-3. Dewatering may locally be required to complete the necessary removals. It should be noted that the ground water table will fluctuate up and down in response to natural recharge and pumping requirements.

Job No: 04-803S-4

7.3.2 Perched Ground Water in the Saugus Formation Bedrock and Quaternary Terrace Deposits

Perched ground water was encountered in the Saugus Formation bedrock and Quaternary terrace deposits within our bucket auger borings B-3, B-11 and B-12, at the elevated portions of the site. Perched ground water conditions can contribute to slope instability in proposed natural and proposed cut slopes. Where appropriate, ground water was used in our slope stability analysis for the project. All stability/buttress fills are required to have backdrains. Subdrains are required in fill areas.

7.4 Soil Compressibility and Hydroconsolidation

Based upon consolidation test data developed for this project, the **compressibility** of the subsurface soils below the recommended removals is considered to be typically low to moderate within the depths tested ranging from 4 feet to 36 feet. Based upon laboratory data developed for this project, **no significant hydroconsolidation effects** due to water incursion are expected at the site after the recommended removals are completed.

7.5 Potential Expansion of Onsite Materials

Per the laboratory testing data, the soils at the site are predominantly granular. The alluvial deposits, slopewash and Terrace Deposits typically have a (i.e. tests per Reference 8) very low to low expansion potential. Saugus Formation bedrock materials were identified at the site. The medium expansive materials typically consist of the siltstone and mudstone units.

7.6 Potential Corrosivity of Soils

7.6.1 Soils Electrical Resistivity and pH

Selected samples of on-site soils were tested for resistivity and pH. Soil electrical resistivity values of selected shallow soils suggest that on-site soils classifying (per Peabody, 1969) as moderately corrosive to ferrous metals exist at the site; pH data shows no significant acidity of tested soils. Test results are presented in **Appendix B**.

Job No: 04-803S-4

7.6.2 Soluble Sulfate and Chloride Content in Soils

Selected samples of on-site soils were collected and tested for sulfates and chloride contents. Based upon test results, concrete exposure to sulfates in shallow soils classifies as negligible (per 1997 UBC Classification). Test results are presented in **Appendix B**.

7.7 Soils Shear Strength

Direct Shear tests were performed on samples of on-site Alluvium (Qal), Terrace Deposits (Qt) and Saugus Formation sandstone (TQs) material. Remolded samples of on-site soils were also tested for proposed fill materials shear strength. Tests results are presented in **Appendix B**.

7.8 Rippability

The bedrock encountered at the site consists primarily of siltstone and sandstone of the Saugus Formation. This formation generally is graded using typical grading equipment and techniques. Heavy single-shank ripping may be required within the more indurated portions.

7.9 Sewage Disposal

It is our understanding that sewage disposal will be by public sanitary sewers.

7.10 Erosion Potential

The existing provisions in the Grading Ordinance for planting and irrigation of constructed slopes in conjunction with drainage recommendations provided in the section "Surface Drainage and Erosion Control," will be sufficient mitigation against potential erosion within the subject site.

7.11 Debris Flow Hazards

Review of the tentative tract map design, the topographic base map and field mapping of the site indicates that debris flow hazard exists both northeast and southwest of proposed cut slope CS-17and exists at the southern portion of the development above the future

Job No: 04-803S-4

walkway/trail. Debris flow hazard is designated (dfh) (color-coded PINK) on the Geologic/ Geotechnical Map. The following mitigation measures are available to mitigate the potential for debris flow hazard:

- 1. Remove loose surficial material
- 2. Construct diverter slough walls
- 3. Construct impact walls
- 4. Construct debris basins
- 5. Control run-off
- 6. Plant selective deep-rooted vegetation

Alternative debris control devices are also shown on **Figure E10** within **Appendix E**. Appropriate mitigations/options will be addressed at the Final Map stage for the development.

8.0 SEISMIC CONSIDERATIONS

8.1 Introduction

The subject property is within the Transverse Ranges Geomorphic Province of Southern California. The Transverse Ranges consist of a series of west-trending mountains and intervening valleys, which is contrary to the northwest geomorphic trend that is typical of most of California and reflects the underlying structural (geologic) trend. These ranges are largely the result of north-south compression, which has resulted in east-west-trending folds and thrust faults. Associated faults in the vicinity of the site include the San Gabriel Fault, Santa Susana, Northridge (East Oakridge) and Sierra Madre (San Fernando) reverse/thrust faults. The January 17, 1994 Northridge (M6.8) Earthquake occurred on a south-dipping thrust fault which uplifted the Santa Susana Mountains at least 40 cm.

The Southern California region is traversed by the San Andreas Fault, which is a transform boundary between the Pacific Plate and the North American Plate. The San Andreas Fault is part of the San Andreas system of northwest-striking, right-lateral faults. The faults of this system are generally historically active, as evidenced by the June 28, 1992 Landers (M7.6) Earthquake (See Fault and Earthquake Epicenter Location Map, Figure D1 in Appendix D).

Job No: 04-803S-4

The Southern California region is seismically active and commonly experiences strong ground shaking resulting from earthquakes along active faults. Earthquakes along these faults are part of a continuous, naturally occurring process, which has contributed to the characteristic landscape of the region.

Three common types of geologic hazards may be produced during a seismic event (earthquake). These include:

- 1. Ground Rupture;
- 2. Ground Motion; and
- 3. Ground Failure

8.2 Ground Rupture

Review of the CDMG Special Publication 42 indicates that the nearest fault designated as an active fault zone under Alquist-Priolo criteria is the San Gabriel Fault located approximately 1.5 miles south of the site. This fault is a major structural element of Southern California. In the Newhall-Saugus area, the San Gabriel Fault is classified as active under Alquist-Priolo criteria and is included within an Alquist-Priolo Special Studies Zone by the State of California.

During our field mapping of the site, one minor fault was detected southeast of hollowstem auger HS-2 within the Saugus Formation bedrock. The observed minor fault consists of approximately 0.25 inch thick of silty clay gouge lined with caliche with approximately 8 inches of apparent reverse separation. Review of the aerial photographs listed at the beginning of this report did not reveal any lineaments or other evidence of Holocene activity. No evidence of fault offset of the overlying Quaternary Terrace Deposits has also been observed.

8.3 Ground Motion

Potential ground motions from future earthquakes on nearby faults have been evaluated utilizing the procedures outlined in the California Department of Conservation, Division of Mines and Geology (CDCMG) Guidelines described in Special Publication 117. **Appendix D** summarizes our ground motion evaluation, which utilized fault parameters from Peterson et al. (1996) and computer programs by Thomas F. Blake. Based on our probabilistic analysis, a peak horizontal acceleration of 0.70g was estimated as the design

Job No: 04-803S-4

basis ground motion (10% chance of exceedance in 50 years) for use in our liquefaction assessment of the site, excluding the proposed school site. The peak ground acceleration with a 10% probability of exceedance in 100 years (upper bound ground motion) was calculated to be 0.84g. This acceleration was used for the liquefaction assessment for the alluvium on school site. Our deaggregation analysis utilizing Boore, et al. (1997) indicates this acceleration would most likely be produced by a 6.5 M earthquake on the Santa Susana fault. The average magnitude-weighted (7.5) acceleration was found to be 0.49g for the design basis earthquake (see Table D-III).

8.4 Ground Failure

Ground Failure is a general term describing seismically induced secondary permanent ground deformation caused by strong ground motion. This includes liquefaction, lateral spreading, seismic settlement of poorly consolidated materials (dynamic densification), differential materials response, slope failures, sympathetic movement on weak bedding planes or non-causative faults, shattered ridge effects and ground lurching.

Potential secondary seismic hazards to Tentative Tract 60258 are described in **Appendix D**. The potential for liquefaction and seismic settlement are evaluated in detail in **Appendix C**. The potential for adverse impacts to the proposed development from liquefaction and other secondary seismic effects is considered to be low to non-existent provided that our recommendations are incorporated into the Grading Plan and implemented during construction.

9.0 GENERAL CONCLUSIONS AND RECOMMENDATIONS

9.1 Feasibility of Development

Tentative Tract 60258 is feasible for development from the standpoint of geology/geotechnical conditions subject to the following recommendations.

9.2 Earthworks Recommendations

9.2.1 Introduction

All grading shall be accomplished under the observation and testing of the Project Soils Engineer, Engineering Geologist and/or their authorized representatives in

Job No: 04-803S-4

accordance with the recommendations contained herein, the current Uniform Building Code requirements and this firm's "Recommended Earthwork Specifications" (Appendix E).

9.2.2 Site Preparation

The purpose of site preparation is to clear and strip the site of organics (vegetation), topsoil, roots, undocumented artificial fill, rubble, construction debris and other unsuitable materials, as applicable, and to grade the site to provide a firm base for compacted fill. All organics should be removed from the site for proper disposal. Topsoil may either be separately stockpiled for later reuse as topsoil in landscaped areas or properly disposed of offsite. On-site rubble should be disposed of as discussed in the "Debris" section below. The geotechnical engineer and/or his representatives shall observe the excavated areas prior to placing compacted fill.

9.2.3 Removals and Benching

In order to provide a uniform firm bottom prior to placing fill, all unconsolidated alluvium, slopewash, colluvial soils and severely weathered terrace deposits and bedrock should be removed from areas to receive fill. The estimated depths of removals are 5 to 36 feet as shown on the **Geologic/Geotechnical Removal Map** (**Plate II**). The exact depth and extent of necessary removals will be determined in the field during the grading operations when observations and more location-specific evaluations can be performed. Removal depths for these areas are based on our subsurface investigations and analyses (including liquefaction and cyclic settlement analyses) as well as geologic and geotechnical judgment.

All existing artificial fill (af) (i.e. uncertified fill) is considered unsuitable for support of proposed engineered fills and/or structures and must be removed and replaced with compacted fill. It is estimated that a thickness of up to 20 feet of artificial fill currently exists in the vicinity of the proposed school site (see Geologic/Geotechnical Map). Slopewash is present within the canyon swales and on drainage sideslopes as shown on the **Geologic/Geotechnical Map**. Slopewash typically interfingers with the alluvium as illustrated on the **Schematic Alluvial/Slopewash Detail**, **Figure E1** within **Appendix E**. Slopewash may locally be 4 to approximately 18 feet in thickness. Removals at the locations of exploratory trenches should be extended to

Job No: 04-803S-4

the bottom of the trench backfill if the adjacent removal depths are shallower than the trench (see Geologic/Geotechnical Map for locations).

In areas to receive compacted fill where the surface gradient is steeper than 5:1 (H:V) the soil mantle, slopewash/colluvium and unsuitable material should be removed and such areas benched horizontally into competent material prior to our in conjunction with fill placement (See Appendix E, Fill Over Natural Slope, Figure E2).

9.2.4 Preparation of Removal Bottom Areas

After the ground surface to receive fill has been exposed, it shall be ripped to a minimum depth of six inches, brought to optimum moisture content or above and thoroughly mixed to obtain a near uniform moisture condition and uniform blend of materials, and then compacted to the required relative compaction per the latest ASTM D 1557 laboratory maximum density.

9.2.5 Dewatering During Removals

As previously discussed and depending on construction season, ground water may be encountered during grading removals to the recommended depths at the location of the proposed school site canyon. The grading contractor should be prepared to implement dewatering measures as necessary, to achieve the required removals.

Where recommended removals encounter ground water, water levels will probably have to be controlled by providing an adequate excavation bottom slope and sumps for pumping water out as the excavation proceeds, or ground water may be lowered by installing shallow dewatering well points prior to grading. Partial removals of soils above the water table and soil improvement below the water table (e.g. shallow compaction grouting) may be another option. Dewatering may be needed depending on the season when the removals are performed.

9.2.6 Over-Excavation

It is recommended that a minimum 5-foot thick over-excavation be performed on all cut-lots, transitional lots (transitions between bedrock, fill, terrace deposits and alluvium) and streets. This over-excavation will provide attenuation of potential differential settlements or differential material response to seismic events and provide

Job No: 04-803S-4

a uniform base for structural support of buildings. If on a cut/fill transition lot the maximum depth of fill exceeds 15 feet, then the thickness of the fill cap should be one-third of the deepest fill thickness below any proposed structure [see Appendix E, Cut Lot and Cut Fill Lot (Transitional), Figure E3]. If excavation of the native soils (i.e. bedrock) exposes expansive materials, then the lot over-excavation should be deepened to 8 feet.

9.2.7 Fill Materials

Onsite soils that are free of debris, over-size rocks, topsoil and organic materials may be used as sources for compacted fills. Rock or similar irreducible material with a maximum dimension greater than eight (8) inches may not be placed in the certified compacted fill. Rocks or hard fragments larger than four (4) inches shall not compose more than 25 percent of the fill and/or lift. Any large rock fragments over eight (8) inches in size, may be incorporated into the fill as rockfill in windrows at specific locations per our rock disposal diagram (see Figure E4, in Appendix E). Where fill depths are too shallow to allow large rock disposal, special handling or removal may be required (see "Recommended Earthwork Specifications," Appendix E).

9.2.8 Fill Compaction

All fill material should be placed in uniform lifts not exceeding 8 inches in its loose state and compacted to a minimum of 90 percent relative compaction as determined based on the latest ASTM Test Designation D-1557. Additional field compaction requirements are presented in **Appendix E**, "**Recommended Earthwork Specifications**". **Appendix E** also includes recommended specifications for placement of trench backfill.

For fills deeper than 40 feet, the portion of fill below 40 feet depth should be compacted to a minimum of 93 percent relative compaction. To ensure compliance, these areas should be delineated at the Grading Plan stage.

9.2.9 Proposed Fill Slopes

Fill slope inclination should not be steeper than 2:1 (h:v). The fill material within approximately one equipment width (typically 15 feet) of the slope face should be

Job No: 04-803S-4

constructed with cohesive material obtained from on-site soils. The finished fill-slope face shall be constructed by over-building the slope and cutting back to the compacted fill material. Stability Fills are recommended where cut slope faces will expose fill-over bedrock, alluvium-over-bedrock or Quaternary Terrace Deposits over bedrock conditions. These fills should be constructed with a keyway at the toe of the fill slope with a minimum equipment width but not less than 15 feet, and a minimum depth of 3 feet into the firm undisturbed earth. Following completion of the keyway excavations, the project engineering geologist shall observe and approve the keyway bottom prior to backfilling with Certified Engineered Fill.

Where fill slopes are constructed above natural ground with a gradient of 5:1 (H:V) or steeper, all topsoil, slopewash/colluvium, and unsuitable material should be removed and a keyway should be constructed at the toe of the fill slope with a minimum width of 15 feet, and a minimum depth of 3 feet into firm undisturbed earth (see **Appendix E, Fill Slope Over Natural Slope diagram, Figure E5**). Following completion of the keyway excavations, the project Engineering Geologist/Geotechnical Engineer or his representative shall observe and approve the keyway bottom prior to backfilling with compacted fill.

Where fill slopes toe out on relatively level natural ground, the removals should be performed to a minimum 1:1 projection from the toe of slope to the recommended removal depth, (see Appendix E, Fill Slope Toeing Out on Flat Alluviated Canyon, Figure E6).

Where sliver fill-slopes are proposed, it is recommended that the slope be constructed with a minimum 15-foot width Stability Fill throughout, which is keyed in at the toe of slope (see Appendix E, Stability/Buttress Fill and Backdrains Detail, Figure E7).

Job No: 04-803S-4

9.2.10 Proposed Cut slopes

We have identified 18 proposed cut slopes (25± feet or higher) on the subject site and designated them as CS-1 through CS-18. The slope geometry, anticipated geologic conditions and recommended mitigation, if necessary, for each slope are presented in the Cut slope Summary (**Table 2**) located at the end of the text. It has been conservatively assumed for the purposes of stability analysis that weak bedding planes may occur anywhere in the proposed cut slopes. If any of the smaller proposed cut slopes (less than 25± feet in height) have adverse geologic of grading configurations (fill over cut) they can be mitigated if necessary with a standard 15 to 20-foot wide key (depending on the proposed cut slope height) and benching similar to a Stability Fill. A "Typical Fill above Cut slope" detail is shown on **Figure E8** within **Appendix E**.

All permanent cut slopes should be constructed at a slope ratio not steeper than 2:1 (horizontal to vertical). All permanent cut slopes exposing terrace deposits or alluvium should be constructed as a stability fills. Temporary cut slopes in competent rock may be constructed as steep as 1.5:1 (h:v). Potential unstable subsurface conditions exposed during construction, such as adverse bedding, joint planes, zones of weakness or exposed seepage, may require either flatter slopes than specified above or construction of benches. We recommend that an Engineering Geologist observe all backcuts during the grading operations and provide appropriate recommendations if necessary.

9.2.11 Natural Slopes

The natural slopes proposed on Tentative Tract 60258 have gradients ranging from 5:1 to 1.1:1 (h:v). All natural slopes that are relatively steep and have accumulations of soil and slopewash which are prone to debris flow hazard. We constructed Geologic Cross Sections where natural slopes and the underlying geologic conditions either above or below the proposed building pads warranted analysis.

A fill over natural slope condition is proposed along the southern edge of the proposed school site (Lot 102) above the Santa Clara River. The natural slope is approximately 90 feet high and has a 1.1:1 (h/v) slope gradient. Up to forty feet of fill is proposed on top of this natural slope. The geologic conditions are illustrated on cross section 3-3'. Slope stability analysis performed on this cross section (see

Job No: 04-803S-4

Appendix F) indicates this fill over natural slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However, due to the steepness and height of the descending natural slope and due to the fill over natural slope condition, it is recommended that a twenty foot horizontal bench be designed to set back the fill slope from the descending natural slope. It is recommended that this horizontal bench extend laterally a distance of approximately 450 feet. This recommended bench is color coded YELLOW on the Geologic/Geotechnical Map as well as on Cross Section 3-3' Plate II.

Slope stability analysis performed on cross section 5-5' illustrating the south east facing descending natural slope located easterly of proposed cut slope CS-5 indicates this natural slope satisfies the City of Santa Clarita factor of safety requirement for slope stability.

The 75 feet high approximately 1:1 (h/v) gradient natural slope is located westerly of lot 99 within the DWP easement. This natural slope is considered the most critical natural slope exposing Quaternary Terrace Deposits. The three dimensional geometry of the underlying geologic conditions is illustrated on cross section 13-13'. Slope stability analysis performed on this cross section indicates that this natural satisfies the City of Santa Clarita factor of safety requirement for slope stability.

9.2.12 Future Walkway Alignment

A future walkway alignment located at the southern portion of the development adjacent to the Santa Clara River. The tentative tract map does not illustrate specific grading design for this walkway (trail) alignment, however, tentative tract civil section D-D (See the Tentative Tract Map) illustrates three potential design conditions anticipated with respect to the site topography. All design conditions include embankment protection extending ± 8 feet below the Santa Clara River grade with the trail elevated 10 feet above river elevation. Condition 1 indicates a proposed retaining wall (up to 14 feet) above the walkway. Condition 2 indicates a 4:1 (h/v) gradient slope above the trail and condition 3 indicates a major drainage course condition. The following comments are provided relative to the anticipated geologic and geotechnical conditions in the vicinity of the future walkway/trail.

• The natural slope area is composed of primarily Saugus Formation bedrock with bedding planes dipping towards the north into the (slope face). This geometric

Job No: 04-803S-4

configuration of the bedding planes is favorable with respect to this south facing natural slope.

- Constructed cross section 3-3' illustrates the steep natural slope located above the trail alignment. Stability analysis performed on this cross section with the added fill surcharge indicates the natural slope above the proposed trail satisfies the City of Santa Clarita factor of safety requirement for slope stability.
- The proposed walkway will be subject to surficial slope instability due to the steep (up to 1:1 h:v) natural slopes.
- The proposed walkway will subject to debris flow hazard along portions of the trail alignment.
- Due to the location of the trail with respect to the Santa Clara River, ground water may be encountered during the future recommended remedial removals for the proposed embankment protection.
- Additional investigation and evaluation will be required when site specific plans and details for the walkway are made available.

9.2.13 Restricted Use Areas

Landslides Qls-1, Qls-2 and Qls-3 presented within Table 1 should be included on the Final Map as a Restricted Use Area. It is our understanding that Landslides cannot be subdivided.

9.2.14 Exploratory Trench and Boring Backfill

All of the exploratory trenches and borings previously excavated for this project should be over-excavated and backfilled with compacted fill in accordance with the earthworks recommendations of this report.

Job No: 04-803S-4

9.3 Oil Wells

Review of the 2003 Munger Map book indicates that one oil well ("Furnival" #1) is present at the southern portion of the subject property. Oil well records on file with the California Department of Conservation, Division of Oil, Gas and Geothermal Resources (DOGGR) were obtained for this well. The DOGGR will require review of the original abandonment files relative to the proposed development and possibly require reabandonment to the latest DOGGR requirements. We have included the abandonment records for this well after the text. For approximate location of this oil well, see the **Geologic/Geotechnical Map**.

If any leaking of undocumented oil wells are encountered during grading operations, their locations should be surveyed and the current well conditions evaluated immediately. Soils in the vicinity of oil wells could be contaminated with petroleum products spilled during operation of the wells. Wells may have associated mud pits which could also contain materials considered to be hazardous under current environmental regulations. If potentially hazardous materials are encountered during future grading operations, they should be assessed and mitigated.

9.4 Drainage Control

Ground water and soil moisture conditions can vary seasonally or for other reasons. It must be recognized that we do not and cannot have complete knowledge of the subsurface conditions at the site. It is possible that seepage could be encountered while stripping and excavating during site preparation at some areas (e.g. in drainages or along terrace/bedrock contacts on the site). Whenever seepage is observed, the condition must be evaluated by the Engineering Geologist and Geotechnical Engineer prior to covering with fill material.

9.4.1 Surface Drainage and Erosion Control

Surface drainage control design should include provisions for positive surface gradients to ensure that surface runoff is not permitted to pond, particularly above slopes or adjacent to building foundations or slabs. Surface runoff should be directed away from slopes and foundations and collected in lined ditches or drainage swales, via non-erodible drainage devices, which should discharge to paved roadways, or

Job No: 04-803S-4

existing watercourses. If these facilities discharge onto natural ground, means should be provided to control erosion and to create sheet flow.

It should be expected that, even with the construction of carefully planned and designed erosion control measures, some erosion may occur during the first few wet seasons after the project is completed. Site grading should be inspected, particularly after heavy, prolonged rainfall, to identify erosion areas at an early stage. Maintenance work should be done as soon as practical to repair these areas and prevent their enlargement.

9.4.2 Subsurface Water Control

Fill slopes and stability fills, as applicable, should be provided with subsurface drainage as necessary for stability. A typical backdrain detail is shown on **Figure E7**, **Appendix E**. Also, subdrains along the bottom of canyon fills should be constructed. A typical canyon subdrain detail is presented on **Figure E9**.

9.5 Shrinkage, Bulking and Subsidence

The following bulking and shrinkage factors are based on judgment and in-situ densities compared to average of 94 percent relative to the maximum dry density as determined per the ASTM D 1557 test. For the materials encountered at the site, shrinkage (decrease in volume) or bulking of those materials, when excavated, placed and compacted as controlled fill is estimated to be as follows:

MATERIAL TYPE	SHRINKAGE (%)	BULKING (%)
Artificial Fill (af)	20-25%	
Alluvium (Qal)	15-18%	
Slopewash (SW)	15-20%	
Upper Qt (0-8' depth) ¹	12-15%	
Qt (>8' depth)	3-6%	
Upper TQs (0-3' depth)*	5-8%	
TQs (>3' depth)		2-5%

Job No: 04-803S-4

¹ Denotes typical upper weathered zones in Terrace Deposits (Qt) and Saugus Formation (TQs) that are prone to shrinkage

The above shrinkage, bulking and subsidence factors are only approximations. The actual volume changes from cut to fill depend on the quality or degree of compaction. The Supervising Civil Engineer should design pad grades with sufficient flexibility to accommodate a possible shortage of fill of up to 10 percent of the total yardage graded.

It should be noted that Quaternary Terrace deposits will provide the majority of the total on-site fill materials.

9.6 Landscaping

All final grades should be sloped away from the building foundations to allow rapid removal of surface water runoff. No ponding of water should be allowed adjacent to the foundations. Plants and other landscaped vegetation requiring excessive watering should be avoided adjacent to the building foundations. Should landscaping be constructed, an effective water-tight barrier should be provided to prevent water from affecting the building foundations.

9.7 Foundation and Settlement Considerations

No specific building foundation designs have been provided at this time. The following general foundation criteria are provided for future design and planning consideration. The proposed Tentative Tract may generally involve the following foundation support conditions:

- Foundation support within certified engineered fill
- Foundation support within transition zones of cut and fill

The structural design should include seismic geotechnical parameters in accordance with UBC requirements for Seismic Zone 4. These parameters will be established at the Grading Plan stage in conformance.

Shallow spread footings for foundation support of residential structures can adequately be founded on engineered fill compacted as previously recommended. Support for heavier structures, if applicable, should be addressed at the Grading Plan stage. Minimum recommended continuous (wall) foundation dimensions are 12 inches width and 12 inches depth below lowest adjacent grade for single-story residential structures. Tentatively, an allowable bearing capacity of **1500 psf** can be used for (minimum-sized) shallow foundations constructed in certified compacted fill. This tentative allowable

Job No: 04-803S-4

bearing value should be confirmed by further field and laboratory testing of the site soils before use in design. Lateral resistance of footing walls should be provided at the Grading Plan stage.

Figure E3 (Appendix E), "Cut Lot (Transitional)" and "Cut-Fill Lot (Transitional") provides a foundation grading detail for locations where foundations will straddle transition zones between cut and fill materials. If the remaining cut-fill transition is steep at depth below the building area, the geometry of the transition should be reviewed during grading operations by the soils engineer on a site specific basis to evaluate the need for additional overexcavation removals and/or additional foundation reinforcement. As a general guideline, steep cut/fill transitions would include slope gradients steeper than 4:1 (h:v) and overall variations in fill thickness of greater than 15 feet which occur within 20 feet of final pad grade.

To minimize significant settlements, it is recommended that the upper soils in areas to receive fills be removed and replaced with compacted fill. No specific foundation design loads are available at this time. Some settlements will be expected due to loads from high fills (e.g. thicker than 30 feet). Currently, locations of proposed thicker fills are: at the vicinity of Lots 10-21, 30-34, 38, 39, 42-56, 77, 97, 99, 102 and 102A. Most of the settlements due to the load of added fill will occur during and shortly after rough grading is complete. However, we are recommending settlement monitoring for some of the deeper fill area. Settlement monitoring program will be discussed during the 40 scale grading plan study.

At other areas, potential settlements in alluvium will be minimized by the removals and recompaction recommended in this report. Also, potential effects from localized seismically-induced settlements will be attenuated by the recompacted upper layers and proposed additional fills (see **Appendix C**).

9.8 Excavations, Shoring and Backfill Recommendations

Excavations deeper than 3.5 feet should conform to **safety** requirements for excavations as set forth in the State Construction Safety Orders enforced by the State Division of Industrial Safety, CAL OSHA. Temporary excavations 12 feet or lower shall be no steeper than 3/4:1 (h:v). For excavations to 20 feet in height, the bottom 3.5 feet may be vertical and the upper portion between 3.5 and 20 feet should be no steeper than 1.5:1 (h:v). Excavations not complying with these requirements should be shored.

Job No: 04-803S-4

It is strongly recommended that excavation walls in sands and dry soils be kept moist, but not saturated at all times.

Parameters for design of cantilever and braced shoring will be provided at the Grading Plan stage.

The bases of excavations or trenches should be firm and unyielding prior to foundations or utility construction. On-site materials other than topsoil or soils with roots or deleterious materials may be used for backfilling excavations. Densification (compaction) by jetting may be used for on site clean sands or imported equivalent of coarser sand provided they have a Sand Equivalent greater than or equal to 30 as determined by ASTM D2419 test method. Recommended specifications for placement of trench backfill are presented in **Appendix E**.

9.9 Expansive Soils Considerations

Soil expansion has been found to be a significant consideration for design and construction of foundations and concrete slabs-on-grade. The recommendations presented in the attached **Table E1**, **Minimum Foundation and Slab Recommendations for Expansive Soils**, in **Appendix E**, have been found to minimize the effects of soil expansion potential in Southern California when followed during project design and construction. It is anticipated that compacted fill from the onsite materials will have a very low to medium expansion potential. The expansion potential of the site soils exposed at rough grade should be tested again after site grading is complete and the final foundation design should be based on those expansion test results.

9.10 Hydroconsolidation Considerations

Based upon our hydroconsolidation test data, existing (non-vegetative) soils do not show significant hydroconsolidation characteristics.

9.11 Corrosivity and Chemical Attack Considerations

Soil corrosivity testing was performed for this study; test results are presented in **Appendix B**. As stated previously in this report, based on resistivity test data, on-site soils classify as severely corrosive to corrosive to buried metals per County of Los Angeles classification. Sulfate concentrations were negligible per UBC (1997)

Job No: 04-803S-4

classification, and pH was near-neutral (ranging from x to x). Chloride concentrations were very low. Pending additional testing, either Type I or II cement may be considered for use in concrete placed in contact with the ground. Mitigating recommendations against soil corrosivity should be revised/expanded based on additional confirmatory tests that should be performed at the Grading Plan stage. Final recommendations for concrete will be in accordance with the latest UBC requirements, and a corrosion specialist should provide mitigating recommendations for potential corrosion of metals in contact with onsite soils.

9.12 Retaining Walls and Pavement Design

Retaining wall and pavement design(s) parameters will be provided at the Grading Plan stage.

10.0 18.03.100F STATEMENT (CITY OF SANTA CLARITA)

In compliance with Section 18.03.100f of the City of Santa Clarita Building Code and the California Building Code, it is the finding of this firm that the Vesting Tentative Tract Map 60258 dated April 1, 2004 will be safe against hazard from landslide, settlement or slippage and will not adversely affect off-site property provided all our recommendations provided in this report are followed.

11.0 GEOLOGIST/GEOTECHNICAL ENGINEER OF RECORD

This report has been prepared assuming that Allan E. Seward Engineering Geology, Inc. will refine all geology and geotechnically-related data for the Grading Plan stage of this project. If the recommendations contained in this report are to be utilized and expansion of the geology/geotechnical work is performed by others, the party performing the work must review this report and assume full responsibility for recommendations contained herein. That party would then assume the title of responsibility as "Geologist/Geotechnical Engineer of Record" for the specific work.

12.0 LIMITATIONS

This report has been prepared for the exclusive use of Synergy, A Land & Development Company and their design consultants for the specific site discussed herein. This report

Job No: 04-803S-4

Job No: 04-803S-4

Page 29

should not be considered transferable. Prior to use by others, we should be notified, as additional work may be required to update this report.

In the event that any modifications in the design or location of the proposed development, as discussed herein, are planned, the conclusions and recommendations contained in this report will require a written review by this firm with respect to the planned modifications.

In performing these professional services, we have used the degree of care and skill ordinarily exercised, under similar circumstances, by reputable engineering geologists and geotechnical engineers practicing in this or similar localities.

The analyses and interpretations presented in this report have been based on the results of pertinent field and laboratory soil investigations. It should be recognized that subsurface conditions can vary in time and laterally and with depth at a given site. Our conclusions and recommendations are based on the data available and our interpretation of the data based on our experience and background. Hence, our conclusions and recommendations are professional opinions and are not meant to be a control of nature; therefore, no warranty is herein expressed or implied.

It should be noted that faulting is normally confined to the area immediately adjacent to a known fault, or within a few feet of the last fault movement. Regardless of what criteria is used however, absolute assurance against future fault displacement or strong ground motion cannot be obtained in tectonically active areas. New faults can form, as the orientation and magnitude of deformational forces in the earth's crust change with time. Therefore, the location of new breaks or ground motions during a seismic event cannot be located or anticipated.

This report may not be duplicated without the written consent of this firm.

Job No: 04-803S-4 Page 30

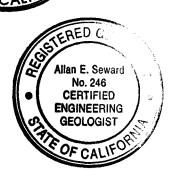
This opportunity to be of service is greatly appreciated. If you have any questions regarding this report please give us a call.

Respectfully submitted,

Eric J. Seward, CEG 2110 Principal Engineering Geold

President

Eric J. Seward
NO. 2110
CERTIFIED
ENGINEERING
GEOLOGIST


Dharmesh P. Amin, M.S., P.E., GE 2553 Principal Geotechnical Engineer

STOPESSION AND THE SHAPE

Reviewed By:

Allen E. Sweet

Allan E. Seward, CEG 246 Principal Engineering Geologist President

The following attachments and appendices complete this report.

VOLUME I

Location Map
References
Summary of Landslides
Summary of Cut slopes
Well Abandonment Records

following page 2

Table 1
Table 2

APPENDIX A - SUBSURFACE LOGS

• Backhoe Trenches

T-3 thru T-39, T-42 thru T-46 (11/13/86) T-47 thru T-81

• Bucket-Auger Borings

B-2 thru B-14 (11/13/86)

B-15 thru B-17

• Rotary-Wash Boring

RW-1 thru RW-3

 $RW-10^{1} (4/4/03)$

• Hollow-Stem-Auger Borings

HS-1 and HS-2

HS-2 thru HS-5¹ (4/4/03)

• Hand-Excavated Boring

HB-1

- Key to Symbols
- CPT Data

CPT-33 thru CPT-37¹ (4/4/03)

APPENDIX B - GEOTECHNICAL LABORATORY INVESTIGATION AND TEST RESULTS

APPENDIX C - LIQUEFACTION POTENTIAL ASSESSMENT AND EVALUATION OF EARTHQUAKE-INDUCED SETTLEMENTS

APPENDIX D - SEISMICITY

APPENDIX E - GENERAL SPECIFICATIONS, FIGURES

Recommended Earthwork Specifications

Recommended Specifications for Placement of Trench Backfill

Drainage and Erosion Control Recommendations

Construction Diagrams

Figures E1-E13

Job No: 04-803S-4

Page 31

Minimum Foundation and Slab Recommendations for Expansive Soils

Table E1

VOLUME II

APPENDIX F - SLOPE STABILITY ANALYSES

APPENDIX G - MAPS AND CROSS SECTIONS

• Maps (In pockets)

Geologic and Geotechnical Map (1"=100")

Sheet 1

Geologic and Geotechnical Map Legend

Plate I

Geologic and Geotechnical Removal Map (1"=200")

Plate II

• Cross Sections (In pockets)

Geologic Cross Sections 1-1' through 6-6

Plate III

Geologic Cross Sections 7-7' through 13-13'

Plate IV

Geologic Cross Sections 14-14' through 16-16'

Plate V

¹ Logs from report dated 4/4/03 for Tentative Tract 53425, prepared for Newhall Land.

Job No: 04-803S-4 Page 32

Distribution: (5) Synergy, A Land & Development Company

Attn: Mr. Rick Doremus

(2) Sikand Associates

Attn: Mr. Ron Horn

(3) City of Santa Clarita Plannning Department

Attn: Heather Werner

Job No: 04-803S-4 Page 33

REFERENCES

Reports by Allan E. Seward Engineering Geology, Inc.

1. Geologic Report

Tentative Tract 31236 – Santa Catarina Canyon Country, California Dated: November 13, 1986 – JN: 6-803-4

2. Geologic Clarification – Existing Conditions

Tentative Tract 31236 – Santa Catarina Canyon Country, California Dated: January 13, 1987 – JN: 7-803-4

3. Geologic And Soils Approval - Revised Tentative Tract Map

Tentative Tract 31236 – Santa Catarina Canyon Country, California Dated: January 22, 1987 – JN: 7-803-4

4. Geologic and Soils Engineering Review

Revised Tentative Tract 31236 – Santa Catarina Canyon Country, California Dated: September 14, 1989 – JN: 9-803-4

5. Geologic Clarification – Existing Conditions

Tentative Tract 31236 – Santa Catarina Canyon Country, California Dated: October 11, 1989 – JN: 9-803-4

6. Geologic Clarification - "Springs"

Tentative Tract 31236 – Santa Catarina Canyon Country, California Dated: June 7, 1990 – JN: 90-803-4

7. Geologic Clarification – "Springs"

Addendum No. 1 Tentative Tract 31236 – Santa Catarina Canyon Country, California Dated: July 17, 1990 – JN: 90-803-4

Report by Jeffrey S. Gordon Geotechnical Engineering

8. Soils Engineering Investigations

Tentative Tract 31236 – Santa Catarina Dated: November 13, 1986 – JN: 6-168

REFERENCES

Published

- Blake, T.F., 1998, FRISKSP Version 4.00: A computer program for the probabilistic estimation of peak acceleration and uniform hazard spectra using 3-D faults as earthquake sources: Thomas F. Blake, Computer Services & Software.
- Blake, T.F., 1999, EQSEARCH Version 3.00: A computer program for the estimation of peak horizontal acceleration from California historical earthquake catalogs: Thomas F. Blake, Computer Services & Software.
- Boore, D.M., Joyner, W.B., and Fumal, T.E., 1997, Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work: Seismological Research Letters, v. 68, no. 1, p. 128-153.
- Campbell, K.W., 1997, Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra: Seismological Research Letters, v. 68, no. 1., p. 154-179.
- CDCDMG, 1995, Checklists for the review of geologic/seismic reports for California public schools, hospitals, and essential services buildings: CDMG Note 48, 3 p.
- CDCDMG, 1997, Guidelines for evaluating and mitigating seismic hazards in California: California Department of Conservation Division of Mines and Geology Special Publication 117.
- CDCDMG, 1998, Seismic Hazard Zones Map for the Newhall Quadrangle Released February 1, 1998, California
- CDCDMG, 1999, Seismic Hazard Zones Map for the Mint Canyon Quadrangle Released March 25, 1999, California
- CDCDMG, 1997, Seismic Hazard Evaluation of the Newhall 7.5-Minute Quadrangle, Los Angeles County, California: Open-File Report 97-11.
- CDCDMG, 1998, Seismic Hazard Evaluation of the Mint Canyon 7.5-Minute Quadrangle, Los Angeles County, California: Open-File Report 98-09.
- Dibblee, T.W., Jr., 1996, Geologic Map of the Mint Canyon Quadrangle, Los Angeles County, California: Dibblee Geological Foundation, Map DF-57.
- Dibblee, T.W., Jr., 1996, Geologic Map of the Newhall Quadrangle, Los Angeles County, California: Dibblee Geological Foundation, Map DF-56.
- Golden Software, Inc., 1998, GrapherTM, Golden Software, Inc.
- Hart, E.W., 1997, Fault-rupture hazard zones in California: California Division of Mines and Geology Special Publication 42, 24 p.
- Jennings, C.W., 1988, Fault map of California with locations of volcanoes, thermal springs, and thermal wells: California Division of Mines and Geology, Geologic Data Map No. 1, 4th Printing.

Job No: 04-803S-4

REFERENCES

- Jennings, C.W., 1994, Fault activity map of California and adjacent areas, with locations and ages of recent volcanic eruptions: Division of Mines and Geology, California Geologic Map Series Map No. 6; scale 1:750,000
- Kew, W.S.W., 1924, Geology and oil resources of a part of Los Angeles and Ventura Counties, California: U.S. Geological Survey Bulletin 753, 202 p.
- Martin, G.R., and Lew, M., 1999, Recommended procedures for implementation of DMG Special Publication 117 Guidelines for analyzing and mitigating liquefaction hazards in California: Southern California Earthquake Center, 63p.
- Morton, D.M., 1976, Reconnaissance surficial geologic maps of the Newhall, Oat Mountain, Santa Susana and Val Verde 7.5' Quadrangles, Los Angeles and Ventura Counties, southern California: U.S. Geological Survey Open File Map 76-211.
- Peabody, A.W., 1969, Principles of cathodic protection, Chapter 5, NACE Corrosion Course: National Academy of Corrosion Engineers
- Petersen, M.D., Bryant, W.A., Cramer, C.H., Cao, T., Reichle, M.S., Frankel, A.D., Lienkaemper, J.J., McCrory, P.A., and Schwartz, D.P., 1996, Probabilistic seismic hazard assessment for the State of California: California Department of Conservation Division of Mines and Geology Open-File Report 96-08, 33 p.
- Real, C.R., Toppozada, T.R., and Parke, D.L., 1978, Earthquake epicenter map of California, showing events from 1900 through 1974 equal to or greater than magnitude 4.0 or intensity V: California Division of Mines and Geology Map Sheet 39.
- Robson, S.G., 1972, Water-Resources Investigation Using Analog Model Techniques in the Saugus-Newhall Area, Los Angeles County, California.
- Sadigh, K., Chang, C.Y., Egan, J.A., Makdisi, F., and Youngs, R.R., 1997, Attenuation relations for shallow crustal earthquakes based on California strong motion data: Seismological Research Letters, v. 68, no. 1, p. 180-189.
- Stein, R.S., and Yeats, R.S., 1989, Hidden earthquakes, Scientific American, v. 260, no. 6, p. 48-57.
- Stewart, J.P. et al., 1994, Preliminary report on the principal geotechnical aspects of the January 17, 1994 Northridge Earthquake: EERC, U.C. Berkeley, Report No. UCB/EERC-94/08, 245 pages.
- Treiman, J., 1987, Landslide hazards in the east ½ of the Newhall Quadrangle, Los Angeles County, California: Landslide Hazard Identification Map #7: California Department of Conservation Division of Mines and Geology Open-File Report 86-16LA; scale 1:24,000.
- Treiman, J., and Saul, R., 1986, The mid-Pleistocene inception of the Santa Susana Mountains: <u>in</u> Ehlig, P.L. (trip leader): Neotectonics in the area between the central and western Transverse Ranges, southern California: Geological Society of America Field Trip Number 10, p. 7-12.
- Uniform Building Code (UBC), 1997.
- Weber, F.H., Jr., 1982, Geology and geomorphology along the San Gabriel fault zone, Los Angeles and Ventura Counties, California: California Division of Mines and Geology Open File Report 82-2LA, 157p.

Job No: 04-803S-4

REFERENCES

- Wells, D.L., and Coppersmith, K.J., 1994, New empirical relationships among magnitude, rupture length, rupture area, and surface displacement: Bulletin of the Seismological Society of America, v. 84, no. 4, p. 974-1002.
- Winterer, E.L., and Durham, D.L., 1962, Geology of southeastern Ventura Basin, Los Angeles County, California: U.S. Geological Survey Professional Paper 334-H, p. 275-366.
- Yerkes, R.F., and Campbell, R.H., 1995, Preliminary geologic map of the Newhall 7.5' Quadrangle, Southern California: U.S. Geological Survey Open-File Report 95-503, scale 1:24,000.
- Yeats, R.S., and Hanson, D.W., 1981, Subsurface geology of the San Gabriel, Holser, and Simi-Santa Rosa faults, Transverse Ranges, California: Semi-Annual Technical Report for period May 1, 1980 to April 30, 1981: USGS Contract No. 14-08-0001-1913, 122 p.
- Yeats, R.S., and Stitt, L.T., 1983, Geology, seismic hazard, and ground-rupture hazard of the San Gabriel and Holser faults, eastern Ventura and western Soledad Basins, California: Final Technical Report: USGS Contract No. 14-08-0001-19138, 26 p.
- Youd, T.L, and Idriss, I.M., eds., 1997, Proceedings of the NCEER workshop on evaluation of liquefaction resistance of soils: National Center for Earthquake Engineering Research Technical Report NCEER-97-0022, 276 p.
- Ziony, J.I., and Jones, L.M., 1989, Map showing late Quaternary faults and 1978-84 seismicity of the Los Angeles region, California: Miscellaneous Field Studies Map, MF 1964, scale 1:250,000.

Job No: 04-803S-4

SUMMARY OF LANDSLIDES

LANDSLIDE NO.	MITIGATION
Accessoremental Accessor of a country and a charge	This landslide is located above the proposed walkway easterly of the proposed school site. A portion of this landslide is located off-site easterly of the tract boundary. This landslide is located in an area where it does not impact the proposed walkway and the proposed development and is safe for the use intended. At the completion of grading, this landslide will be designated as Restricted Use Area on the Final Map.
2	This landslide is located above the proposed walkway easterly of the proposed school site. A portion of this landslide is located off-site easterly of the tract boundary. This landslide is located in an area where it does not impact the proposed walkway and the proposed development and is safe for the use intended. At the completion of grading, this landslide will be designated as Restricted Use Area on the Final Map.
3	This landslide is located mostly off site easterly of the proposed school site proposed walkway. This landslide is located in an area where it does not impact the proposed walkway and the proposed development and is safe for the use intended. At the completion of grading, this landslide will be designated as Restricted Use Area on the Final Map.

Job No: 04-803S-4

Table 1

SUMMARY OF CUT SLOPES

Proposed Cut slope CS-1

<u>Location:</u> Vicinity of Lot 102A <u>Direction Slope Faces:</u> Southerly

Slope Parameters: 100± feet high with a 2:1 gradient

Cross Sections: 1-1'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits over TQs bedrock dipping into the proposed cut slope face. Slope stability analysis on Cross Section 1-1' indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However, the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. **Grossly stable but surficially unstable**.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-2

Location: Vicinity of southern portion of Lot 102

Direction Slope Faces: Southerly

Slope Parameters: 70± feet high with a 2:1 gradient

<u>Cross Sections:</u> None; see section 1-1' for cut slope CS-1 for similar configuration.

Anticipated Geologic Conditions: TQs bedrock anticipated to be dipping 6-16° into the proposed cut slope face. Slope stability analysis performed on cross section 1-1' for proposed cut slope CS-1, which depicts similar but more critical geologic conditions indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability and therefore **grossly stable by inspection**.

Mitigation Measures: No mitigation required.

Proposed Cut slope CS-3

<u>Location</u>: Vicinity of the eastern portion of Lot 102

Direction Slope Faces: Semicircular facing south to southeast to east

Slope Parameters: 85± feet high with a 2:1 gradient

Cross Sections: 4-4'

Anticipated Geologic Conditions: South facing portion - TQs bedding anticipated to be dipping into the proposed cut slope face; Easterly facing portion - TQs bedding anticipated to be oriented neutral to dipping 4° out of the proposed cut slope. In addition fill is proposed above the cut slope creating a fill over cut condition. Slope stability analysis performed on cross section 4-4' indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability and therefore **grossly stable as designed**. However, due to the fill over cut condition it is recommended that this slope be constructed as a stability fill.

Job No: 04-803S-4

Table 2.1

Job No: 04-803S-4 Table 2.2

SUMMARY OF CUT SLOPES

Mitigation Measures: Stability Fill required.

Proposed Cut slope CS-4

Location: Southeastern portion of the site within Lot 120

Direction Slope Faces: Westerly

Slope Parameters: 120± feet high with a 2:1 gradient

Cross Sections: 4-4'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits over TQs bedrock dipping into to oriented neutral relative to the proposed cut slope face. Slope stability analysis performed on cross section 4-4'indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Ouaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-5

Location: South and adjacent to Golden Valley Road and north of lot 102

Direction Slope Faces: Southerly

Slope Parameters: 65± feet high with a 2:1 gradient

Cross Sections: 6-6'

Anticipated Geologic Conditions: Anticipated to expose TQs bedrock dipping into the proposed cut slope face. Portions of this cut slope may expose horizontally bedded Qt. The Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable by inspection but potentially surficially unstable if Quaternary Terrace Deposits are exposed within the proposed cut slope face.

Mitigation Measures: Stability fill may be required for portions of the slope exposing Qt/TQs contacts.

Proposed Cut slope CS-6

Location: Vicinity of southwestern portion of Lot 100 at the intersection of Golden Valley Road and proposed "I" Street

Direction Slope Faces: Semicircular south to southwest to west

Slope Parameters: 60± feet high with a 2:1 gradient

Cross Sections: None;

SUMMARY OF CUT SLOPES

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits over TQs bedrock dipping into the proposed cut slope face. Slope stability analysis on cross section 1-1', which depicts similar but more critical geologic conditions, indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. The Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable by inspection but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-7

Location: Vicinity of southern portion of Lot 123

Direction Slope Faces: South to southwest

Slope Parameters: 35± feet high with a 2:1 gradient

<u>Cross Sections:</u> None; see section 1-1' for cut slope CS-1 for similar configuration.

Anticipated Geologic Conditions: Anticipated to expose TQs bedrock dipping 3-9° into the

proposed cut slope face. Grossly stable by inspection.

Mitigation Measures: No Mitigation required.

Proposed Cut slope CS-8

Location: Vicinity of southern portion of Lot 99

Direction Slope Faces: Southerly

Slope Parameters: 90± feet high with a 2:1 gradient

Cross Sections: 8-8'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits over TQs bedrock dipping 3-9° into the proposed cut slope face. However, the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable by inspection but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-9

<u>Location</u>: Vicinity of northeastern portion of Lot 100

<u>Direction Slope Faces:</u> Semicircular west to southwest to south

Slope Parameters: 50± feet high with a 2:1 gradient

Cross Sections: 7-7', 6-6'

<u>Anticipated Geologic Conditions:</u> Anticipated to expose horizontally bedded Quaternary Terrace deposits over TQs bedrock dipping into the proposed cut slope face. Fill is proposed over the

Job No: 04-803S-4

Table 2.3

SUMMARY OF CUT SLOPES

cut portion of the slope creating a fill over cut condition. Slope stability analysis performed on cross section 4-4', which depicts similar but more critical geologic conditions indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-10

Location: Vicinity of northern portion of Lot 98

Direction Slope Faces: Southerly

Slope Parameters: 60± feet high with a 2:1 gradient

Cross Sections: 6-6'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis on cross section 11-11', which depicts similar but more critical geologic conditions, indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. **Grossly stable but surficially unstable**.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-11

Location: Vicinity of northeastern portion of Lot 98 and westerly of Golden Valley Road

Direction Slope Faces: Westerly

Slope Parameters: 40± feet high with a 2:1 gradient

Cross Sections: 10-10', 11-11'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis performed on cross section 11-11' for cut slope CS-11 indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact.

Grossly stable but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-12

<u>Location:</u> Easterly of Lot 98 <u>Direction Slope Faces:</u> Westerly Job No: 04-803S-4

Table 2.4

Job No: 04-803S-4 June 11, 2004 Table 2.5

SUMMARY OF CUT SLOPES

Slope Parameters: 65± feet high with a 2:1 gradient

Cross Sections: 10-10', 11-11'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis performed on cross section 11-11' for cut slope CS-11 indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact.

Grossly stable but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-13

Location: Eastern portion of Lot 97 **Direction Slope Faces:** Westerly

Slope Parameters: 35± feet high with a 2:1 gradient

Cross Sections: None; see section 11-11' for cut slope CS-12 for similar but more critical configuration.

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis on cross section 11-11' for proposed cut slope CS-12, which depicts similar but more critical geologic conditions, indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-14

Location: Northeastern portion of Lot 97

Direction Slope Faces: Westerly

Slope Parameters: 65± feet high with a 2:1 gradient

Cross Sections: 14-14'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis performed on cross section 11-11' for proposed Cut Slope CS-12, which depicts similar geologic conditions, indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable but surficially unstable.

Mitigation Measures: Stability fill required.

Job No: 04-803S-4 Table 2.6

SUMMARY OF CUT SLOPES

Proposed Cut slope CS-15

Location: North of Lots 1 through 10

Direction Slope Faces: Southerly

Slope Parameters: 35± feet high with a 2:1 gradient

Cross Sections: 15-15'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits over TQs bedrock with bedding planes dipping into the proposed cut slope face. Fill is also proposed over portions of this cut slope creating a fill over cut condition. The Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable by inspection but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-16

Location: Within the DWP easement adjacent to proposed "B" Street

Direction Slope Faces: Northeasterly

Slope Parameters: 40± feet high with a 2.5:1 to 3:1 gradient

Cross Sections: 14-14'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis on cross section 11-11', which depicts similar but more critical geologic conditions, indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable but surficially unstable.

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-17

Location: Vicinity of northern portion of Lot 99

Direction Slope Faces: South to southeast

Slope Parameters: 75± feet high with a 2:1 gradient

Cross Sections: 12-12'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis on cross section 11-11' for proposed cut slope CS-12, which depicts similar geologic conditions, indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. Grossly stable but surficially unstable.

Job No: 04-803S-4 Table 2.7

SUMMARY OF CUT SLOPES

Mitigation Measures: Stability fill required.

Proposed Cut slope CS-18

Location: Vicinity of northeastern portion of Lot 97

Direction Slope Faces: Westerly

Slope Parameters: 25± feet high with a 2:1 gradient

Cross Sections: 14-14'

Anticipated Geologic Conditions: Anticipated to expose horizontally bedded Quaternary Terrace deposits. Slope stability analysis on cross section 11-11', which depicts similar but more critical geologic conditions, indicates this slope satisfies the City of Santa Clarita factor of safety requirement for slope stability. However the Quaternary Terrace Deposits are subject to surficial instability due to their friable and erosive nature and due to anticipated seepage at the Qt/TQs contact. **Grossly stable but surficially unstable**.

Mitigation Measures: Stability fill required.

STATE OF CALIFORNIA DEPARTMENT OF CONSERVATION DIVISION OF OIL AND GAS

REPORT OF WELL ABANDONMENT

	Inglewood,	California
·	February 25, 1964	
•		
Mr. B. C. DeSpain		
P. C. Box 35 Newhall, California		
Agent for B. C. DeSPAIN		
Dear Sir:		
Your report of abandonment of	Well No"Furnivall" 1	,
Sec. 18 , T.4 N. , R. 15 W. ,	5. B. B. & M.,	field,
Los Angeles County, dated I	February 4, 1964, receive	d February 6, 1964,
has been examined in conjunction v	vith records filed in this offic	e.
A review of the reports and rec	ords shows that the require	ements of this Division,
which are based on all information	filed with it, have been fulfi	lled.

JLZ: es

cc - Mr. E. R. Murray-Aaron Mr. B. C. DeSpain Conservation Comm. Production Dept. Mr. L. A. Dutton Fire Prevention Bureau BOND NO. 3183635 Dated February 28, 1962

E. R. MURRAY-AARON State Oil and Gas Supervisor

Deputy Supervisor

Appendix A

TT 31236 PROJECT PAIMER - Santa Catarina

JOB NO. 6-803-4 LOGGED BY PF	French Log	No.	m	PROJECT DATE	ECT	PAIMER - Santa Catarina November 13, 1986
LITHOLOGY			BEDDING	FAULTING	JOINTS	COMMENTS
0 - 4' RECENT ALLUVIUM; Qal; Gray-brown	m sand and gravel					
4' - 7' BEDROCK; TQs, Brown medium sand dense; dry; massive	medium sandstone and conglomerate;	merate;				
						No Ground Water
24						No Caving
SCALE I" = 5 Ft.						TD 7 Ft.
		*.				
-	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- - 	-	- -	-	-
	p a l	. ,				
					1-2-1-1	
						(

PROJECT PAIMER - Santa Catarina COMMENTS No Ground Water ALIAN E CEWADA November 13, 1986 No Caving TD 10 Ft. JOINTS DATE FAULTING E M BEDDING 80 No. 4 Z. BEDROCK; TQs; Gray to medium-brown pebbly sandstone; dense to very dense; dry to damp RECENT ALLUVIUM; Qal; Brown sand and gravel; loose Trench Log 10.0.00 3 55 LITHOLOGY Z 6-803-4 LOGGED BY JOB NO. SCALE I" = - 10. 2 2. 0

PALMER - Santa Catarina COMMENTS No Ground Water ALLAN E. SEWARD November 13, 1986 TT 31236 No Caving TD 10 Ft. a) N 60 E 26NW **E0SE** b) N 24 E JOINTS PROJECT DATE BEDDING FAULTING N 55 E 10 W No. 5 ΰ SLOPEWASH; Medium-brown to tan sand with cobbles; loose BEDROCK; (TQs); Gray-to light-brown; medium-to coarse damp; dense; ½" to ½" caliche-filled fractures both sandstone and cobble conglomerate; dry; moderately Trench Log dense; fine, silty sandstone at bottom of trench; sub-parallel and oblique to bedding 3 55 LITHOLOGY z 6-803-4 5 Ft. GF LOGGED BY SCALE I" = JOB NO. - 10, _ 1 <u>-</u> 0

PALMER - Santa Catarina No Ground Water COMMENTS VayMis 3 N. . 18 TT 31236 November 13, 1986 No Caving TD 12 Ft. bj.n 31 E 55 NW JOINTS PROJECT DATE FAULTING a) N 25 W 3 NE BEDDING approx. No. SLOPEWASH; SW, Reddish-brown sand and gravel; moderately BEDROCK; TQs; Light brown, medium-to coarse sandstone Log and pebble conglomerate; dense to very dense; dry; some caliche filled fractures parallel to slope 70s) Trench 3 LITHOLOGY 70 Z dense; dry 6-803-4 5 Ft. LOGGED BY PE - 1.51 JOB NO. SCALE I" = 1.5'-12'

0

TT 31236 PROJECT PALMER - Santa Catarina

November 13, 1986 DATE No. Trench Log 6-803-4 JOB NO.

No Ground Water COMMENTS deeper than 6' due to large boulders Unable to go No Caving TD 6 Ft. JOINTS BEDDING FAULTING QUATERNARY TERRACE; Qt; Light-orange brown; cobble- to boulder conglomerate with minor coarse sand lenses; loose; dry 0 团 68 LITHOLOGY z 5 Ft. LOGGED BY GF SCALE 1" = 9 - 0

SOIL; Light brown sandy silt No. 8 DATE	TT 31236 PALMER - Santa Catarina November 13, 1986	S COMMENTS		No Ground Water	No Caving	TD 8.5 Ft.		AL' AN E CEWARD
Soli, Light brown sandy silt dense; dry fine to meditum sandstone; N 59 E N 59 E Ft.	CT	-AULTING JOINTS					-	AL
6-803-4 LITHOLOGY SOIL; Light brown sandy silt dense; dry N 59 E Ft.	No. 8		ψ.				 -	
NO. BED E	803-4	LITHOLOGY		59			1 1	

PROJECT PALMER - Santa Catarina COMMENTS No Ground Water TT 31236 November 13, 1986 No Caving TD 10 Ft. JOINTS DATE FAULTING a) N 85 E 9 NW BEDDING approx. Trench Log No 3 SOIL; Medium-brown, fine-to medium silty sand with SLOPEWASH; Light-brown, fine-to coarse sand with BEDROCK; TQs; Light-to medium-brown; fine-to pebbles and gravel; dry; moderately dense coarse silty sandstone; fractured; damp; 3 LITHOLOGY 60 gravel; dry; loose moderately dense Z 6-803-4 5 Ft. 된 LOGGED BY JOB NO. SCALE I" = - 10 3. 1 1 0

6 atarina 6 ENTS			Water			
TT 31236 R - Santa Catarina Der 13, 1986 COMMENTS			No Ground Water No Caving	TD 10 Ft.		
SCT PALMER - November JOINTS					-	
PROJECT DATE FAULTING JO					-	
No. 10 BEDDING					-	
rench Log No	fine-to coarse sand with	coarse sandstone lenses, with minor moderately dense			 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Tr	light brown,	BEDROCK; TQs; Light-brown; fine-to with pebble-to cobble conglomerate fine silty sandstone; dry to damp;	25 W			
6-803-4 GF	SLOPEWASH; Tan-to gravel; loose; dry	BEDROCK; TQs; Light-br with pebble-to cobble fine silty sandstone;	z	5 Ft.		
JOB NO.	0 - 1,	1 - 10,		SCALE I" =		

PROJECT

Excavated trenches TT 31236 PALMER - Santa Catarina 11 through 30 on 9/11/86 with crawlerhoe using 24" bucket No Ground Water COMMENTS On old road November 13, 1986 No Caving TD 10 Ft. JOINTS DATE FAULTING BEDDING BZ approx. 80 No. II z Trench Log sandstone lenses of silty sandstone; dense to very BEDROCK; TQs; Gray; massive pebbly sandstone and [1] 25 LITHOLOGY Z dense; clay 6-803-4 LOGGED BY AES Ft. Ŋ SCALE I" = JOB NO. 0 - 10

tarina	STN:	ng ope	ater		
TT 31236 - Santa Catarina er 13, 1986	LUAMMOO	Side existing road cut-slope	No Ground Water No Caving	TD 6 Ft.	·
ECT PAIMER - November	JOINTS				
PROJECT DATE	FAULTING				
, 12	BEDDING	N 80 E		······································	
Trench Log No. 12		/ sandstone; with sandstone;			
	LITHOLOGY	BEDROCK; TQs; Gray massive pebbly interbedded reddish-brown clayey dense to very dense; dry	N 30 W		7.08
JOB NO. 6-803-4 LOGGED BY AES		0 - 6' BEDROC interb dense		SCALE I" = 5 Ft.	

TT 31236 PROJECT PALMER - Santa Catarina No Ground Water On edge of erosion gully, no soil COMMENTS November 13, 1986 TD 1.5 Ft. No Caving JOINTS DATE FAULTING BEDDING E Z 78 5 Trench Log No. 13_ BEDROCK; TQs; Reddish-brown "Red bed"; clayey sandstone; N 3 fractured; dense; dry 15 LITHOLOGY z 6-803-4 LOGGED BY AES 5 Ft. JOB NO. SCALE I" = 0 - 1.5

TT 31236
PROJECT PAIMER Santa Catarina JOB NO.

LOGGED BY	AES Trench Log No. 14	0. 14	PROJECT		PALMER - Santa Catarina November 13, 1986
	LITHOLOGY	BEDDING	FAULTING	JOINTS	COMMENTS
. 18"	SOIL; Light to moderate brown silty sands; "old" Qt soil zone; moderately dense; dry				
	QUATERNARY TERRACE; Qt; Moderate brown silty sandstone and silty pebbly sandstone; dense to very dense; vague stratification of gravel lense	Horizontal			
				·	
	N 20 E				No Ground Water
				-	No Caving
SCALE I" = 5 F	Ft.				TD 8 Ft.
- - -		-	-		
				_	E W4 -

TT 31236 PAIMER - Santa Catarina No Ground Water COMMENTS Side existing road cut ALLAN E. SEWARD November 13, 1986 No Caving TD 10 Ft. JOINTS PROJECT DATE FAULTING BEDDING 3 Z 88 No. 15 z $\ensuremath{\mathtt{BEDROCK}}$; TQs; Light gray sandstone and pebbly sandstone with interbedded fine sandstone beds, excellent Trench Log stratification; dense to very dense; dry 1705/ . 0 . 0 0 E 80 LITHOLOGY Z 6-803-4 LOGGED BY AES 5 Ft. SCALE I" = JOB NO. 0 - 10

TT 31236 PALMER - Santa Catarina COMMENTS No Ground Water AL. 11 E 07WF00 November 13, 1986 Edge old Qt surface No Caving TD 6 Ft. JOINTS PROJECT DATE BEDDING FAULTING No. 16 Log SOIL; Medium brown, clayey sand, "old" elevated Qt soil zone surface; moderately dense; dry; grades downward into reddish-brown pebbly sands and sandy Trench Soll 3 9 LITHOLOGY Z 6-803-4 gravel 5 Ft. LOGGED BY AES JOB NO. SCALE I" = .9 - 0

PROJECT PAIMER - Santa Catarina No Ground Water COMMENTS Side existing road cut TT 31236 November 13, 1986 No Caving TD 6 Ft. JOINTS DATE FAULTING BEDDING B Z 75 No. 17 z BEDROCK; TQs; Gray, interbedded and pebbly sandstone; very dense; good stratification; dry Trench Log 闰 00.... 72 LITHOLOGY z 6-803-4 AES SCALE I" = 5 Ft. LOGGED BY JOB NO. 9 - 0

TT 31236 PROJECT PAIMER - Santa Catarina On side existing No Ground Water COMMENTS November 13, 1986 **A** No Caving TD II Ft. road cut ш JOINTS ALL DATE FAULTING BEDDING 3 Z 80 No. 18 z Log BEDROCK; TQs; Interbedded gray sandstone and reddish-brown silty sandstone; thin bed of clayey sandstone; dense; dry Trench × (705 65 LITHOLOGY z 6-803-4 AES SCALE I" = 5 Ft. LOGGED BY JOB NO. 0 - 11

TT 31236 PAIMER - Santa Catarina No Ground Water COMMENTS ALLAN E. SEWARD November 13, 1986 TD 6.5 Ft. No Caving JOINTS PROJECT DATE FAULTING BEDDING No. 19 pebbly sandstone; clasts to 2' with a brown clay silt QUATERNARY TERRACE; Qt; Medium brown sandstone and Trench Log to silty sandstone matrix; old re-worked Qt soil zones; thin lenses of clean gray sandstone; dense ;≾ 27 LITHOLOGY to very dense; dry Z 6-803-4 LOGGED BY AES 5 Ft. 0 - 6.5SCALE 1" = JOB NO.

TT 31236
PROJECT PALMER - Santa Catarina JOB NO.

November 13, 1986	COMMENTS	Lowest portion of quarry site; western end			No Ground Water	No Caving	TD 9 Ft.	-		'N F SWADA
1 1 1)	JOINTS							-		Α'
DATE	FAULTING			·				- - -	·	Account to age of the control of the
No. 20	BEDDING	Horizontal	Massive					- - 		
LOGGED BY AES/GF Tog No	LITHOLOGY	0 - 7' QUATERNARY TERRACE; Qt; Light yellowish-brown; silty sandstone and conglomerate clasts to 8"; damp; friable sandstone and conglomerate at erosional basal contact	7' - 9' BEDROCK; TQs; Dark reddish-brown clayey sandstone ("Red Bed"); very dense; moist		N 58 E		SCALE !" = 5 Ft.			

正正 五正

JOB NO.	6-803-4		PROJECT	T PALMER	TT 31236 R - Santa Catarina
LOGGED BY	Trench Log No. 21	21	DATE	ı	1
			7777	TO A CAT	757
	LITHOLOGY	BEDDING	FAULTING	JOINTS	COMMENTS
0 - 10.5'	QUATERNARY TERRACE; Qt; Medium brown sandstone and conglomerate (8" clasts) within clayey to silty sandstone matrix; old Qt soil zones that have been reworked; no distinct stratifications				NW corner property and quarry base
					May be near edge of old alluvial flood plain into old slopewash deposits?
	N 55 W				No Ground Water
					No Caving
SCALE I" = 5	Ft.				TD 10.5 Ft.
-		-	-	-	-
. 1 1 1 1					
				ALLAN	N E. SEWARD

PALMER - Santa Catarina No Ground Water COMMENTS November 13, 1986 TT 31236 WA No Caving TD 8 Ft. ш JOINTS PROJECT DATE FAULTING a) horizontal BEDDING No. 22 QUATERNARY TERRACE; Qt; Light-to orange-brown; fine-to coarse silty sandstone with floating gravel and cobbles; damp; moderately dense; bedding horizontal in fine-grained layers Trench Log *Q*⁺ ≥ 49 LITHOLOGY Z 6-803-4 5 Ft. LOGGED BY GF SCALE 1" = JOB NO. -8 0

PROJECT PALMER - Santa Catarina COMMENTS No Ground Water ALLAN E. SEWARD November 13, 1986 No Caving TD 8 Ft. JOINTS DATE FAULTING horizontal BEDDING No. 23 a silty sandstone with conglomerate lenses; dry; moderately dense to loose; bedding horizontal in fine-QUATERNARY TERRACE; Qt; Light-brown; fine-to coarse Trench Log 3 26 LITHOLOGY grained layers z 6-803-4 5 Ft. LOGGED BY GF SCALE I" = JOB NO. . 8 1 0

TT 31236 PALMER - Santa Catarina No Ground Water COMMENTS November 13, 1986 WA. TD 9.5 Ft. No Caving ш ALL JOINTS PROJECT DATE FAULTING a) horizontal BEDDING No. 24 0 Log QUATERNARY TERRACE; Qt; Light-brown to red fine-to coarse silty sandstone, with conglomerate lense above; dry; moderately dense to loose; bedding horizontal in fine-grained layers 0 Trench 15 LITHOLOGY Z 6-803-4 5 Ft. GF 0 - 9.5 Ft. LOGGED BY JOB NO. SCALE I" =

TT 31236 PAIMER - Santa Catarina COMMENTS No Ground Water ALLAN E. SEWARD November 13, 1986 TD 8.5 Ft. No Caving JOINTS PROJECT DATE BEDDING FAULTING a) horizontal No. 25 QUATERNARY TERRACE; Qt; Orange-to medium.brown; fineabundant pebbles; grades orange-to medium-brown with depth; bedding horizontal in fine-grained layers to coarse silty sandstone, with isolated cobbles and Trench Log 5 0 闰 35 LITHOLOGY z 6-803-4 5 Ft. GF LOGGED BY JOB NO. 0 - 8.5 SCALE I"=

TT 31236
PROJECT PAIMER - Santa Catarina COMMENTS No Ground Water November 13, 1986 <u>``</u> TD 9.5 Ft. No Caving JOINTS 4 DATE FAULTING BEDDING No. 26 QUATERNARY TERRACE; Qt; Light-brown to orange, fine-to coarse, sandstone, with cobble conglomerate lenses; 00 Log intense orange (Fe) stain in bottom 2'; bedding 0 000 Trench horizontal in fine-grained layers 3 15 LITHOLOGY z 6-803-4 5 Ft. LOGGED BY GF SCALE I" = JOB NO. 9.5 ſ 0

TT 31236
PROJECT PAIMER - Santa Catarina November 13, 1986 DATE Trench Log No. 27 JOB NO. 6-803-4 LOGGED BY GF

LITHOLOGY	BEDDING	FAULTING	STNIOL	COMMENTS
0 - 1.5' SLOPEWASH; SW; Fine-to medium grained sand with cobbles; dry; loose				
1.5'- 10' BEDROCK; TQs; Medium-brown to gray; medium-to coarse sandstone with cobble conglomerate lenses; conglomerate very dense; dry; sandstone moderately dense; dry to damp; isolated thin bed of very silty sandstone; near bottom of trench	a) horizontal			
N 10 W			·	No Ground Water No Caving
SCALE I" = 5 Ft.				TD 10 Ft.
ms of the second	-	-	-	
			ALLAN	N E. SEWARD

PALMER - Santa Catarina No Ground Water COMMENTS A' ' A'N E SEWARD November 13, 1986 TT 31236 No Caving JOINTS PROJECT DATE FAULTING BEDDING No. 28 0 0 QUATERNARY TERRACE; Qt; Orange-brown; fine-to coarse Trench Log SOIL; Medium-brown; fine-to medium silty sand with sandstone with conglomerate lenses; cobbles to 8"; 0 many cobbles; dry; loose dry; moderately dense LITHOLOGY 27 z 6-803-4 5 Ft. LOGGED BY GF JOB NO. SCALE 1" = 9 1 _ 0

6-803-4

TT 31236

PROJECT PAIMER - Santa Catarina No Ground Water COMMENTS ALLAN E. SEWARD November 13, 1986 8,5 Ft. No Caving ΤΩ JOINTS DATE FAULTING BEDDING No. 29 0000 QUATERNARY TERRACE; Qt; Medium-to coarse sandstone Trench Log with conglomerate lenses (clasts up to 18"); dry; SOIL; Medium-brown; fine-to medium sand with cobbles; dry; moderately dense _×1 10 LITHOLOGY moderately dense Z 5 Ft. GF LOGGED BY 8.5 JOB NO. SCALE I" = - 1. -0

PROJECT PAIMER - Santa Catarina COMMENTS No Ground Water ALLAN E. SEWAND TT 31236 November 13, 1986 No Caving TD 9 Ft. JOINTS DATE FAULTING BEDDING No. 30 QUATERNARY TERRACE; Qt; Orange-brown; medium-to coarse sandstone with conglomerate lenses; cobbles up to 16" at base of trench; dry; moderately dense SOIL; Reddish-brown; fine-to medium-silty sand with scattered cobbles and pebbles; dry; moderately dense Trench Log 3 LITHOLOGY 65 z 6-803-4 5 Ft. LOGGED BY GF JOB NO. SCALE 1" = --1 **-** 6 0

excavated 9/11/86 with crawlerhoe PALMER - Santa Catarina No Ground Water COMMENTS Trenches 31-43 with 24" rearmounted bucket ALLAN E. SEWARD TT 31236 November 13, 1986 No Caving TD 10 Ft. JOINTS PROJECT DATE FAULTING BEDDING No. 31 00 Trench Log QUATERNARY TERRACE; Qt; Reddish-brown, medium- to SOIL; Medium-brown, fine- to coarse pebbly sand; 0000 coarse silty sandstone with cobbles (up to 8") conglomerate lenses; no distinct bedding ្ឋា 24 LITHOLOGY z 6-803-4 GF LOGGED BY JOB NO. SCALE I" = - 101 __ _ 0

PROJECT PALMER - Santa Catarina COMMENTS No Ground Water TT 31236 November 13, 1986 WA No Caving TD 7% Ft. ш ALL JOINTS DATE FAULTING BEDDING No. 32 Trench Log conglomerate with pebble and sandstone lenses; dry; dense to very dense; cobbles to 16"; no QUATERNARY TERRACE: Qt; Reddish-brown, cobble 0 0 3 LITHOLOGY S distinct bedding Z 6-803-4 5 Ft. GF. LOGGED BY JOB NO. SCALE I" = $0 - 7^{\frac{1}{2}}$

TT 31236

	,								
IR - Santa Catarina	November 13, 1986	COMMENTS		No Ground Water	No Caving	TD 7½ Ft.		-	
í	Noven	JOINTS							
PROJECT	DATE	FAULTING						-	
ι, ,,		BEDDING F	N 55 W 90 0	· · · · · · · · · · · · · · · · · · ·		en		- - -··	
	rendi Log No.	8	.um-to coarse a)N 7 dense; single					100-705	
- 			BEDROCK; TQs; Light-brown to gray; medium-to coarse sandstone with minor pebble lenses; dry; dense; sing silty sandstone bed (2" thick)	Z,				- - -	
4		LITHOLOGY	K; TQs; Light-b one with minor sandstone bed (S				-	
	BY GF		BEDROC sandst silty			5 Ft.		-	
	LOGGED B		- 0 - 7% - 0			SCALE I" =	-	- - -	

ALLAN E. SEWARD

TT 31236 PALMER - Santa Catarina COMMENTS No Ground Water E. WA. November 13, 1986 No Caving TD 8 Ft. ALLyn JOINTS PROJECT DATE FAULTING a) N 75 E 16 NW BEDDING No. 34 705 BEDROCK; TQs; Light-brown to gray medium- to coarse sandstone with one (1) 2" silty sandstone bed; top 1' fractured; few isolated pebbles Trench Log ≥1 32 LITHOLOGY z 6-803-4 5 Ft. GF LOGGED BY JOB NO. SCALE I" = <u>.</u> I 0

PALMER - Santa Catarina No Ground Water COMMENTS ALLAN E. SEWARD TT 31236 November 13, 1986 No Caving TD 11 Ft. JOINTS PROJECT DATE FAULTING a) N 83 E 8 NW BEDDING No. 35 SLOPEWASH; Reddish-brown, fine-to coarse sand with Trench Log coarse sandstone with cobble conglomerate lenses; damp; moderately dense; grades reddish-brown to BEDROCK; TQs; Reddish-brown to gray, medium-to cobbles (up to 5"); dry; loose ⋈ LITHOLOGY m gray with depth Z 6-803-4 5 Ft. GF LOGGED BY JOB NO. SCALE I" = - 11' - 4, 4, 0

TT 31236 PALMER - Santa Catarina No Ground Water COMMENTS November 13, 1986 **∀** No Caving TD 8½ Ft. ئىر JOINTS PROJECT DATE FAULTING a) N 55 W 6 NE BEDDING No. 36 SLOPEWASH; Orange-brown, fine-to medium silty sand with scattered cobbles; loose to moderately dense; dry BEDROCK; TQs; Medium-to coarse sandstone with 2" very silty sandstone horizon; abundant caliche stain; Trench Log 3 15 LITHOLOGY scattered cobbles z 6-803-4 G.F. SCALE I" = 5 Ft. LOGGED BY JOB NO. - 8½ <u>.</u> ı -0

PROJECT PAIMER - Santa Catarina COMMENTS No Ground Water November 13, 1986 No Caving TD 9% Ft. JOINTS DATE FAULTING a) N 85 W 3 NE BEDDING approx. No. 37 SLOPEWASH; Light-brown to gray, fine-to coarse silty silty sandstone (3" thick); moderately dense; damp Trench Log BEDROCK; TQs; Light-brown to gray (grades brown with depth); medium-to coarse sandstone with one 10 to dry; scattered cobble conglomerate lenses sand with cobbles and pebbles; loose; dry 3 40 LITHOLOGY z 6-803-4 LOGGED BY GF SCALE I" = 5 Ft. JOB NO. 11 - 9121 <u>-</u> 1

0

ALLAN E. SEWARD

Santa Catarina No Ground Water COMMENTS TT 31236 November 13, 1986 × No Caving TD 8½ Ft. ш PALMER JOINTS ۲ PROJECT DATE FAULTING N 75 E 6 NW BEDDING No. 38 bottom of trench and scattered conglomerate lenses; SLOPEWASH; Sw; Gray, very coarse sand with cobbles and pebbles; loose; dry Log coarse sandstone with 1' silty sandstone bed at BEDROCK; TQs; Light-to medium brown, medium-to Trench moderately dense; damp to dry 3 20 LITHOLOGY z 6-803-4 5 Ft. LOGGED BY 11 2 JOB NO. - 83 ī SCALE _ 0

PALMER - Santa Catarina No Ground Water COMMENTS ALLAN E. SEWARD TT 31236 November 13, 1986 TD 12% Ft. No Caving JOINTS PROJECT DATE FAULTING N 85 E 6 NW BEDDING No. 39 sandstone with scattered cobble conglomerate lenses; 1' layer of parallel-laminated medium sandstone at Log BEDROCK; TQs; Gray-to light brown; fine-to coarse bottom; loose to moderately dense; dry to damp Trench Z 45 LITHOLOGY z 6-803-4 LOGGED BY GF SCALE 1" = JOB NO. $0 - 12^{\frac{1}{2}}$

TT 31236 PALMER - Santa Catarina No Ground Water COMMENTS November 13, 1986 **X** No Caving 8½ Ft. шí Ð JOINTS AL PROJECT DATE BEDDING FAULTING a) N 61 W 6 NE No. 42 sandstone with minor conglomerate lenses; moderately 0 BEDROCK; TQs; Light-brown to gray, medium-to coarse Trench Log 0 3 o . sand with gravel and scattered cobbles; loose; SLOPEWASH' Light-brown, fine-to medium silty 0 3 dense; damp to moist 49 LITHOLOGY Z 6-803-4 dry 5 Ft. GF LOGGED BY JOB NO. SCALE I" = 23. 23,1-83,1 ı 0

TT 31236 PALMER - Santa Catarina No Ground Water COMMENTS ALLAN E. SEWARD November 13, 1986 No Caving TD 7 Ft. JOINTS PROJECT DATE BEDDING FAULTING a) N 76 W 8 NE No. 43 BEDROCK; TQs; Orange-brown to gray, medium-to coarse sandstone with conglomerate lenses; moderately dense to dense; damp to dry Trench Log Α. 0 LITHOLOGY ≥1 20 6-803-4 z SCALE I" = 5 Ft LOGGED BY JOB NO. 1 - 0

Excavated trenches @ 30" Ground Water 10/1/86 using Extendo Hoe with 24" bucket PALMER - Santa Catarina 44 through 46 on Water flowing in Extensive Caving COMMENTS stream to north _ **W** November 13, 1986 TD 6 Ft. ш TT. 31236 JOINTS ۲ PROJECT DATE FAULTING BEDDING No. 44 RECENT ALLUVIUM; Qal; Gray sand and gravel; clasts Trench Log to ly-inch diameter; flowing water; extensive Ool Z 45 LITHOLOGY caving; friable Z 6-803-4 AES SCALE I" = 5 Ft LOGGED BY -9 JOB NO. 0

PROJECT PAIMER - Santa Catarina Extensive Caving COMMENTS ALLAN E. SEWARD No Free Ground Water November 13, 1986 TD 14 Ft TT. 31236 JOINTS DATE FAULTING BEDDING No. 45 irregular lense of sorted gravel; clasts to 2-inch diameter; friable, extensive caving; moist to wet Trench Log RECENT ALLUVIUM; Qal; Sand and gravel; @ 8 feet. Do D [1] ~ LITHOLOGY z 6-803-4 AES SCALE 1" = 5 Ft LOGGED BY JOB NO. 0

(Quarry) operations PROJECT PAIMER - Santa Catarina COMMENTS Fill results of No Ground Water "old" mining November 13, 1986 ×. No Caving TD 10 Ft. TT. 31236 JOINTS AL DATE FAULTING BEDDING - Asphalt - 5" thick No. 46 underlain by coarse sand and gravel; clasts to 3-inch RECENT ALLUVIUM; Qal; Moderate brown silty sand and FILL; af; Black asphalt; irregular patches of silty RECENT ALLUVIUM; Qal; Sand and gravel; loose; damp Log gravel; upper 2 feet "old" flood plain deposits, Trench sand; greenish gray silt, sand and gravel _ ග් Qa. H diameter; damp to moist 25 LITHOLOGY z 6-803-4 AES SCALE I" = 5 FT LOGGED BY 101 2 -9 JOB NO. 2 9 0

CLIENT: Synergy PROJECT: Tentative	e Tract 60258	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD	TRENCH LOG NO. T-47
EXCAVATION METHOD:	Track-Mounted Backhoe w/24" bud	EXCAVATED: 1/14/04 ELEVATION:	
DEPTH (feet) SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG USCS SYMBOL	DESCR		ATTITUDES Content (%) Other Tests ATTITUDES Tests
	SOIL/SLOPEWASH; soil/Qsw @ 0' Moderate- to reddish-brown and scattered cobbles; soft to mo voids; roothairs QUATERNARY TERRACE; Q @ 5' Cobble and boulder conglom brown clayey sandstone matrix; massive, mostly well-rounded gr boulders up to 2' diameter Comments Refusal at 8'; large boulder	a silty clayey sand with pebbles oderately hard; dry to damp; ot (5-8.5') herate in reddish- to orangish- moderately hard; damp;	
TOTAL DEPTH	8.5 feet	←N11W	SCALE: 1 inch = 5 feet
	Q5W		
_		+	No Caving No Groundwater

CLIENT: Synergy PROJECT: Tentative Tract 60258	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 1/14/04 ELEVATION:	TRENCH LOG NO. T-48				
EXCAVATION METHOD: Track-Mounted Backhoe w/24" bucket	ELEVATION:					
SAMPLE TYPE SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG USCS SYMBOL USCS SYMBOL		Moisture Content (%) Dry Density (pcf)	ORY TESTS Other Tests			
SLOPEWASH/ARTIFICIAL FILL; @ 0' Moderate brown silty, clayey sar cobbles; soft to moderately hard; dam trash BEDROCK; TQs (12-12.5') @ 12' Yellowish-gray sandstone; hard Comments Concrete dumped and unable to dig to bottom area Surface logged	l; damp					
TOTAL DEPTH: 12.5 feet N	77W→	SCALE: 1 inch = 5 fe	et			
Concrete OSW						
-		No Cavin No Grour	F -			

CLIEN		r	Syne	rgy	T1 C0056			JOB NO:	04-803S-4	TRENCH LOG NO. T-49					
FROS			ı enta	ative	Tract 60258	3		LOGGED	6/11/04 BY: 1445		i				
								EXCAVA	MJD	 ,	"	O. _	,	T 	
EXCA	VA	rion	METH	IOD:	Track-Moun	ited Backhoe w/2	4" hucket	ELEVATION	1/1 <u>4/04</u> ON:	<u> </u>	1				
		2			Track Would	ited Backfield W/2	- Duonot			T	<u> </u>		LAE	ORAT	ORY TESTS
_	SAMPLE TYPE	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL											
DEPTH (feet)	LET	N	일	SYN		!	DESCRIPTION				ATTITUD	ES	ture (%	y (pc	Other
D ()	١W	APLE	3AP	SCS									Moisture Content (%)	Dry Density (pcf)	Tests
	S	SAN	9	Š					Ö	ŏ					
0		·			ARTIFIC										
					and cobble	ARTIFICIAL FILL; af (0-2.5') @ 0' Light to moderate brown silty, clayey sand with pebbles and cobbles; soft; damp; trash; organics; gravel								}	
-						and cobbles; soft; damp; trash; organics; gravel SOIL/SLOPEWASH; soil/Qsw (2.5-14') @ 2.5' Moderate to dark brown silty, clayey sand with pebbles									
-					@ 2.5' Mod	erate to dark br s; soft; damp to	own silty, cla	ayey san woide: n	d with pebb	les					
5 —	.				and coppie	s, sort, damp to	1110131, 10013,	voius, ii	1455146						
-															
-	ŀ														
_															
10 —	i														
	i														
-															
-															
-					Comments	I									
15 —						er at base of af									
-					Looks mor	e like Qsw than	Qal								
_							•								
20 —															
T	OT.	AL	DEP	TH:	14 feet		N53	SW→			SCALE	E: 1 in	ch =	5 fe	eet
78															
1	_						1	1							
├ `	\		_	1	,	af		+							
_		/	<u> </u>	†	60	neh ;		+							
 T 	Т	Т	₹	1. 1.	T. 1. 1/	1111	1, 1	$\frac{1}{1}$			1	1		1	
F				M		ľ· <i>/.</i> – . (10 -	+							
_				`	<.°. /	. 0 0	. \	Ť		: :					
					< °.) C.		I							
				 		1. / 0 000	11:11								
					`	0		+							
_						0.1/	!!	+							
-						/. r. o	10	+							
_						`.		+	•						
													No (Cavir	ng
										· 			No C	3rour	dwater

CLIENT: Synergy PROJECT: Tentative Tract 60258 EXCAVATION METHOD: Track Managed Poolshood (24th by 1975)	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 1/14/04 ELEVATION:		TRENCH LOG NO. T-50					
Track-Mounted Backnoe W/24" but	cket CEEVATION:		LABORATORY TESTS					
GRAPH (feet) SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG USCS SYMBOL	RIPTION	ATTITUDES	Moisture Content (%) Dry Dry Dry Casts Action Content (%) Dry Casts Action Content (%) Dry Content (%) Dry Content (%)					
QUATERNARY ALLUVIUM; @ 0' Light gray sand and pebbly scattered cobbles; well-bedded; I	Qal (0-14') sand; loose; damp to moist; aminated							
@ 10' Interbedded light yellowis. clayey fine-grained sand; mediu Comments Surface logged @ 10' dug much firmer per backl	m dense; moist; laminated							
TOTAL DEPTH: 14 feet	←N60E	SCALE: 1 inc	ch = 5 feet					
			No Caving No Groundwater					

CLIENT: PROJEC	Т:	Syne Tenta	rgy ative	Tract 60258			JOB NO: DATE: LOGGED EXCAVA	6/11/0 BY: N	04 1JD		TRENCH LOG NO. T-51					3	
EXCAVA	TION	METH	IOD:	Track-Moun	ted Backhoe w/2	4" bucket	ELEVAT	1,	/14/04	·	_						
DEPTH (feet) SAMPLE TYPE	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION					ATTI	TUDES	S		Dry Density (pcf)		ESTS her ests
5 - 10 - 15 - 120 - 20 - 1				to moist; sl BEDROC 4' Light		ontact with T dstone; hard	'Qs; gra	evel len	ses								
тот	AL	DEP	TH:	6 feet	r	←N	75E				sc	ALE:	1 inc	:h =	5 fe	et	
- - - - -							+ +		T 1		1			11			T
					a	t 70,5	+	·	•								
_															Cavin Grour	g Idwa	ıter

CLIENT: PROJEC	T:	Syne Tenta	rgy ative	Tract 60258	3		JOB NO: 04-803 DATE: 6/11/04 LOGGED BY:	4	TRENCH LOG NO. T-52				
EXCAVA	TION	METU	IOD:				MJ	ID 4/04	NO	• <u> </u>	02		
EXCAVA	HON	IMEIA	OD	Track-Moun	ted Backhoe w/2	24" bucket	ELEVATION.						
DEPTH (feet) SAMPLE TYPE	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION			ATTITUDES	Moisture Content (%)		ORY TESTS Other Tests	
5-				@ 0' Dark to moist; re QUATER @ 1' Reddiction cobbles; m	NARY TERRA sh- to orangish-l oderately hard t ocal clast suppor	l with pebble <u>CE;</u> Qt (1-9') brown clayey to hard; damp	, pebbly sandsto ; crudely bedd	one with ed to					
тот	AL	DEP	TH:	9 feet		←N ′	15E		SCALE: 1	inch =	5 fe	eet	
- - - - 	-	1		111				1 1 1	1 1 1	1 1			
							+ + + + + + + + + + + + + + + + + + + +						
_											Cavin Grour	g dwater	

CLIENT: Synergy PROJECT: Tentative T EXCAVATION METHOD: Ti		ed Backhoe w/2	4" bucket	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 1/14/04 ELEVATION:			NCH L T-53	.OG
Greet) SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG USCS SYMBOL		1	DESCRIPTION			ATTITUDES	Moisture Content (%) BY Dry Density (pcf)	ORY TESTS Other Tests
5	@ 0' Modera scattered co BEDROCE @ 8' Yellowi	Styres (8-14') ish-gray to light distone with coble ely bedded	clayey sand vap; roots; void	with pebbles and ds rown sandstone and tered boulders; loose	e;			
TOTAL DEPTH:	14 feet		← N4	I3W		SCALE: 1 in	ich = 5 fe	et
				+				
		Qsw						
		0.000	0.00	+ + + + + + + + + + + + + + + + + + + +				
							No Cavin No Groun	-

CLIENT: PROJECT:	Syne	rgy ative	Tract 60258		-	JOB NO: 04-803S-4 DATE: 6/11/04		TRE	NC	HI	LOG
	7 01 110		11401 00200			6/11/04 LOGGED BY: MJD EXCAVATED: 1/14/04		NO.	<u>T-</u> ;	54	
EXCAVATIO	N METH	OD:	Track-Moun	ted Backhoe w/2	24" bucket	ELEVATION:					
DEPTH (feet) SAMPLE TYPE SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION			ATTITUDES	Moisture Content (%)		ORY TESTS Other Tests
5 - 10 - 15 - 20 - 10 - 15 - 10 - 10 - 10 - 10 - 10 - 1			voids; scatt BEDROC @ 2' Light; siltstone; n	tered pebbles K; TQs (2-7.5') yellowish-gray solution of the second of the secon	sandstone and	and; soft; damp; root	wn B: N	172E,7NW			
TOTAL	. DEP	ГН:	7.5 feet		←N:	30E		SCALE: 1 i	nch =	5 fe	eet
- - - - - - -	T					OSW OSW OTAS			1 1	Ī	
					-			Cavin Grour	g dwater		

CLIENT: Synergy PROJECT: Tentative Tract 60258	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 1/14/04 ELEVATION:		TRENCH LOG NO. T-55				
EXCAVATION METHOD: Track-Mounted Backhoe w/24" bucket							
SAMPLE GRAPI USCS	DESCRIPTION						
and boulders; soft; damp to wet; root	SLOPEWASH; Qsw (0-9') @ 0' Light to moderate brown silty, pebbly sand with cobbles and boulders; soft; damp to wet; roots; voids BEDROCK; TQs (9-11') @ 9' Light yellowish-gray pebbly sandstone; hard; damp						
TOTAL DEPTH: 11 feet N	SCALE: 1 inch = 5 feet						
	+ + + + + + + + + + + + + + + + + + + +						
- - - - -							
- - -	200						
			No Caving No Groundwater				

CLIENT: Synergy PROJECT: Tentative Tract 60258			JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD		į.	TRENCH LOG NO. T-56							
							EXCAVATED: ELEVATION:	1/14/04					
DEPTH (feet) SAMPLE TYPE	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL		DESCRIPTION				ATTITUD	ES		Dry Density (pcf)	Other Tests
5	8		SM	@ 0' Light silty sand damp to w	gged	wn to light ye with cobbles oulders to 14	and boulder '; water seep	s; soft; age at 14';					Curve =B
TOTAL DEPTH: 14 feet N4W→ SCALE: 1								: 1 inc	1 inch = 5 feet				
- - - - - - - - -	1			Q _{5w}	0 0 0 0								
_							<u> </u>					Cavir Grour	g dwater

CLIENT: Synergy PROJECT: Tentativ	e Tract 60258	Backhoe w/24" bucket	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 1/14/04 ELEVATION:		NCH LOG T-57
GRAPHIC LOG		DESCRIPTIO)N	ATTITUDES	Moisture Content (%) Dry Other Lests Density (bcf)
0	SLOPEWASI @ 0' Moderate soft to modera Comments Weathered Qt'	tely hard; damp; mass	ebbly sand with cobbles; ive; roots to 7'		
TOTAL DEPTH	l: 11 feet	·	-N60W	SCALE: 1 i	nch = 5 feet
		0.00		7 7 7	
					No Caving No Groundwater

CLIENT: Synergy JOB NO: PROJECT: Tentative Tract 60258 DATE: LOGGED							04-803	3S-4			71		NIC	L	00			
PRO	DJECT: Tentative Tract 60258 DATE: 6/11/04 LOGGED BY: MJE																_OG	
										N	О.	<u>T-:</u>	<u>8c</u>		_			
									1/1	15/04								_
EXC	AVA	TION	METH	IOD:	Track-Moun	ted Backhoe w/2	24" bucket	ELEVATI	ON:	-	·							
	ΤΙ	ĸ			I								,		LAE	ORAT	ORY TES	TS
	SAMPLE TYPE	MBE	GRAPHIC LOG	USCS SYMBOL												6		
DEPTH (feet)	ĒŢ	₽	일	3Y.M			DESCRIPTION					ATT	ITUD	ES	trus (%	, <u>a</u>	Other	.
의 *	틴	PLE	AP	SSS								••••			Moisture Content (%)	Dry Density (pcf)	Tests	- 11
	SA	SAMPLE NUMBER	GR	nsı											-8	۵		
0	\vdash	8			SOII · soi	1 (0.1.51)	** **				-				-			
	$\ \ $				@ 0' Reddi	l (0-1.5') sh-brown silty, o	clayey sand/s	andy cl	ay; loose	e to]		
,	$\mid \mid$				l medium de	ense: damp: root	s: voids: sca	ttered p	ebbles		F	3: Horizo	ntal					
	1				QUATER @ 1.5' Gra	NAŔY TĒŔRA des to yellowish	<u>CE;</u> Qt (1.5- -brown to ve	8') llowish	erav ne	bbly								
	1					with cobbles; lo					ed;							
5-	$\{\ $				cross-bedd	ed; scattered bo	ulders to 1' d	liameter	; erosio	nal								
	$\mid \mid$				scours; cha	innels; locally cl	ast supporte	d; orang	e iron-s	taini	ng							
	$\mid \mid$					ommente.												
	$\mid \mid$				Comments													
	1					oderately weathered to 6'												
10 -	$\mid \cdot \mid$					defacely weathered to 0												-
-	1																	1
-	1																	
	$\mid \mid$																	
	1																	
15 -	$\mid \mid$,				ŀ
	$\mid \mid$					•									İ			
	-														İ	}		ŀ
	1																	1
	┦╏			,														
20 -	$ \ $																	1
т	OT	<u></u> -	DEP	TU.	8 feet		, N	76W	*****			90	· AI E		nch =	5 fa	not .	
		~L	DL1	T	0 /661		<u> </u>	7000						' ''	1011 -		T	
								+		į								İ
_								+		!							ł	i
_						Soil		+										- 1
_				ł	7	0	0	+										i
$\overline{}$	7	Т					10.00		11	$\neg \vdash$	1		\top		ТТ	\neg		
-						000	0.00	+		l				1				1
_							11: 3:	+		ļ								
_																		
					0.0007												:	ı
				-													 	
_					+													
						+												ı
_					+													
_																		
															No C	Cavin	h	·
_					·			+									dwate	r i
								<u>+</u>							140 (7,001	Jawaie	

CLIENT:	Syne	rav				JOB NO: 04-803S-	-4	TDI	-		00		
PROJECT:	Tenta	ative	Tract 60258	;		DATE: 6/11/04					_OG		
						LOGGED BY: MJD		NO	. <u>T-</u> :	<u> 9</u>			
						EXCAVATED: 1/15/	04						
EXCAVATION	ON METH	OD: .	Track-Moun	ted Backhoe w/2	4" bucket	ELEVATION:							
(feet) SAMPLE TYPE	SAMPLE NUMBER GRAPHIC LOG	USCS SYMBOL		I	DESCRIPTION			ATTITUDES	Moisture Content (%)		ORY TESTS Other Tests		
0			medium de QUATER! @ 2' Grade sandstone cross-bedd scours; cha	sh-brown silty, cense; damp; root NARY TERRA es to yellowish-b with cobbles; loc ed; scattered bot annels; locally cl	es; voids; scatt <u>CE;</u> Qt (2-8.5) brown to yello bese to dense; ulders to 1' di ast supported	andy clay; loose to tered pebbles ') wish-gray pebbly damp; crudely bec ameter; erosional l; orange iron-stai	dded;						
TOTA	L DEP	ГН:	8.5 feet		←N8	36E		SCALE: 1	inch =	5 fe	eet		
Soi/							1 1 1	-	1 1	ſ			
						+				 Cavin			
		I	I	1		No Groundwater							

CLIENT: Synergy		JOB NO: 04-803S-4			~~
PROJECT: Tentative Tract	60258	DATE: 6/11/04	- IKE	NCH L	OG
		LOGGED BY: MJD	NO	T-60	
		EVOAL/ATED.			
EXCAVATION METHOD:		1/15/04			į
Track-	Mounted Backhoe w/24" buck	et			
Ш띠				LABORATO	RY TESTS
				्र इ	
DEPTH (feet) APLE TO APLE TO APHIC L SS SYMI	DESCRIP	TION	ATTITUDES	le the	Other
(feet) SAMPLE TYPE AMPLE NUMBE GRAPHIC LOG USCS SYMBOL				Moisture Content (%) Dry Density (pcf)	Tests
(feet) SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG USCS SYMBOL					
	'. aail (0.9t)			1 1 1	
	_; soil (0-3') Reddish-brown silty, clayey s	and/sandy clay: loose to	1	1 1	
	um dense; damp; roots; voids				
	_	_		1 1 1	
$\frac{1}{2}$	TERNARY TERRACE; Qt Grades to yellowish-brown to	(3-9') vellowish-gray nebbly	1		
	stone with cobbles; loose to de		B:Horizontal		
	-bedded; scattered boulders t				
	s; channels; locally clast sup				
]					
	nents				
10 Mode	erately weathered to 7'		1		
1					
1					
1			-	1 1	
1					
15					
-					
4111					
4					
20 -					
TOTAL DEPTH: 9	feet	←N85W	SCALE: 1 ir	nch = 5 fee	et .
			1		
-	Soil	/ T		:	
_					
_	9 .0				
	The state of the		1111		
	0.00	0.0.0			
-	1 oct	0.00	1		
-	0.00				
-	.0.0				
-		†			
-		† 1			
-		†			
-		+			i
				No Caving	1
-		A		No Ground	
	1		1	.,000110	A T T C I C I

OUTS	JOB NO: 04 8020 4		
CLIENT: Synergy PROJECT: Tentative Tract 60258	U4-8035-4	TRE	NCH LOG
Tollians Hadi 00200	LOGGED BY: MJD	⊢ NO.	T-61
	EXCAVATED: 1/15/04		
EXCAVATION METHOD: Track-Mounted Backhoe w/24" bucket	t ELEVATION:		
			LABORATORY TESTS
DEPTH (feet) SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG USCS SYMBOL USCS SYMBOL ITGEN	ION	ATTITUDES	Moisture Content (%) Dry Density (pcf) Asset
SOIL; soil (0-4') @ 0' Moderately brown sandy silt/si voids; scattered pebbles @ 1.5' Reddish-brown silty clayey sa dense; damp; scattered pebbles; gra with depth QUATERNARY TERRACE; Qt (4) @ 4' Grades to orangish-brown pebb cobbles; medium dense to dense; da staining Comments Weathered to 6' Dug relatively hard	and/sandy clay; medium ades more sandy and pebbly 4-7') bly sandstone with clay and		
TOTAL DEPTH: 7 feet	N14E→	SCALE: 1 ir	nch = 5 feet
501		1 1 1 1	11111
- Qt			
			No Caving No Groundwater

CLIENT: PROJECT	S T: T	ynergy entativ	e Tract 60258	3		303S-4 1/04 MJD 1/15/04	ł	ENC). <u>T</u> -(_OG	
EXCAVAT	ION N	IETHOD:	Track-Mour	nted Backhoe w/2	24" bucket	ELEVATION:	1/13/04				
I L	SAMPLE NUMBER	GRAPHIC LOG USCS SYMBOL			DESCRIPTION			ATTITUDES	e (%		ORY TESTS Other Tests
5-			loose; dam QUATER @ 1.5' Gra cobbles; m @ 4' No cla well-bedde	rately brown silt p; roots; voids NARY TERRA des to orangish- oderately dense y, locally clast s ed vish-brown pebb d t to 5'	CE; Qt (1.5-7 brown clayey; massive to c upported; pel	'.5') pebbly sand rudely bedde oble lenses; r	stone with ed; cemented noderately	B:Apx. Horizontal			
TOTA	AL D	EPTH:	7.5 feet		N39E			SCALE:	1 inch =	5 fe	eet
- - - - - - - - -				soil Tilling						I	
- -									Cavin Grour	g dwater	

							=					
CLIENT:	Syne	rgy	-			JOB NO: 04-803S-4		TI	REN	۷C	н	_OG
PROJECT:	i enta	ative	Tract 60258	5		6/11/04		1	O			
11						EXCAVATED: 1/15/03		1 14	- "_	<u></u>	, , ,	
EXCAVATIO	N METH	IOD:	Track-Moun	ited Backhoe w/2	24" bucket	ELEVATION:						
" H	g	٦							I	LAE		ORY TESTS
(feet) SAMPLE TYPE	GRAPHIC LOG	USCS SYMBOL		ı	DESCRIPTION			ATTITUDI	ES	Moisture Content (%)	Dry Density (pcf)	Other
" 0	GRAP	SOSO								Mois	D Densit	Tests
5-			to medium QUATER @ 2' Reddi cobbles; m bedded; or Comments Cemented Hard Digg	rate to reddish-be dense; damp; s NARY TERRA sh-brown slightledium dense to ange iron-staini	cattered cobl <u>CE;</u> Qt (2-6. ly clayey peb dense; damp ng; locally cl	bly sand stone with ; massive to crudely		(orizontal				
20 —												
TOTAL	_ DEP	TH:	6.5 feet		← N	2E		SCALE	E: 1 inc	ch =	5 f	eet
_						1+						
				Qt	5011							
						No Cay No Gro						ng ndwater

CLIENT: Sync	ergy tative Tract 6025	58		JOB NO: 04-803S-4	4	TRI	ENC	H	_OG
	1100			LOGGED BY: MJD EXCAVATED: 1/15/0)4	NO	<u>. T-(</u>	<u> 34</u>	
EXCAVATION MET	HOD: Track-Moι	inted Backhoe w/24	" bucket	ELEVATION:		<u> </u>			
DEPTH (feet) SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG	USCS SYMBOL	DE	ESCRIPTION			ATTITUDES		Doy Density (pcf)	ORY TESTS Other Tests
5	SOIL; so @ 0' Ligh roots; voi QUATE! @ 0.5' Ye with cobl pebbled l staining; Commen Friable Moderate	[orizontal							
TOTAL DEF	TH: 7 fee	t	N80E	Ē→		SCALE: 1	inch =	5 fe	eet
		Q+ 0:	81 0				1 1		
_				+				Cavin Grour	g dwater

PROJE	CT:		ative	Tract 60258	3		JOB NO DATE: LOGGE EXCAV	04-803S-4 6/11/04 D BY: MJD ATED: 1/15/04		1	REI O.			LOG
EXCAV	ATION	METI	IOD:	Track-Moun	ted Backhoe w/2	24" bucket	ELEVAT	TION:						
DEPTH (feet)	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL		Е	DESCRIPTION				ATTITUDI	ES	Moisture Content (%)	Dry Density (pcf)	ORY TESTS Other Tests
5				@ 0' Pale b	OPEWASH; (0-9 rown to light br scattered cobble ses; roots; voids	own silty sar						2.9	110	
10 -	sand with cobbles; loose to medium moderately well-bedded; channels; boulders Comments							mp; friable;	1			2.4	95 107	Consol
<u> </u>	TAI	DFP	TH·	14 feet		←N′	10E			SCALE	 : 1 in	 ch =	5 fe	eet
TOTAL DEPTH: 14 feet							+	soil/Qsw Qal	bench	T				TO 1
_											9-		Cavir Grour	g dwater

CLIENT: PROJECT:	Syne Tent	rgy ative	Tract 6025	8		JOB NO: 04-803S- DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 1/15/0		1	ENC). T-		LOG
EXCAVATIO	N MET	IOD:	Track-Mou	nted Backhoe w/	24" bucket	ELEVATION:	<u> </u>				ļ
JEPTH (feet) SAMPLE TYPE SAMPLE TYPE	GRAPHIC LOG	USCS SYMBOL		ı	DESCRIPTION			ATTITUDES	p 8		ORY TESTS Other Tests
5-			@ 0' Mode cobbles; lo QUATER @ 5' Light	ose; dry to dam NARY ALLUV yellowish-brow	ale brown silt p; roots; voids <u>IUM;</u> Qal (5 n to yellowish	cy, pebbly sand wi s; pebbly lenses -14') n-gray pebbly sand nse; damp; moder	d and				
10				ed; scattered box				-	2.8	104	
15				too friable, lost a friable, only 4		ed			2.7	112	
TOTAL	. DEP	—— <i>-'</i> ГН:	14 feet		N458	=		SCALE: 1	inch =	5 fe	et
-	- DEI		la leet				beach		1101		
										Cavin Frour	g dwater

CLIENT: PROJECT:		ative	Track Moun	3 nted Backhoe w/2	4" huakat	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 5/6/04 ELEVATION:			TRENCH LOG NO. T-67			
'			rack-Moun	neu Dacknoe W/Z	4 Ducket				IAF	BORAT	ORY TESTS	
DEPTH (feet) SAMPLE TYPE	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION			ATTITUDES	e %		Other Tests	
10-			with pebbl and roots t	les and scattered	l cobbles; der	TS; Qt (0-9') ay to clayey sandstone use; damp to moist; voi ussive, structureless; lo	ids					
TOTAL	DEP	тн:	9 feet		←N:	24E		SCALE:	1 inch =	5 f	eet	
				Qt						1.		
 						1				Cavir Grou	ng ndwater	

CLIENT: S	ynergy			04-803S-4		T	ŞΕI	NC	Н	_OG		
PROJECT: T	entative	Tract 60258	3		DATE:	6/11/04 BY: M.ID				T-(
					EXCAVAT	ED: 5/6/04	 .	""	U. _	1	,,,	
EXCAVATION N	IETHOD:	Track-Mour	ited Backhoe w/2	4" bucket	ELEVATIO	N:					·	
PE BER	8 호											ORY TESTS
PTH E TY NUN	HC L	}	ſ	DESCRIPTION				ATTITUDE	s	ture ot (%)	/ (pcf)	Other
DEPTH (feet) SAMPLE TYPE SAMPLE NUMBER	GRAPHIC LOG USCS SYMBOL									Moisture Content (%)	Dry Density (pcf)	Tests
0 8 8	9 5	PEDROC	T. TO- (0 E1)				An	x B: N40E,6NV	v			
		@ 0' Redd	<u>K;</u> TQs (0-5') lish-brown sand				nd Co	ntact				
1		yellowish- erosional o	gray pebbly sand contact; slightly:	istone; hard; fractured; lo	; damp; c cal calich	rudely bedo ie; scattered	led; l					,
4		cobbles in	sandstone									;
5												
4												
10 -							•	•				
1				•								
]												
15	}						}					
1												
4												
20 -												
20 -	EDTU	F 54		Non								
TOTAL D	EPIH:	5 feet	<u> </u>	N8E	:→ 		Γ	SCALE	: 1 In	cn =	5 TE	et
_					‡							
_					+ '							
_			·			_						
	1	[] . [1	TT	1	, 1
-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1							
_			TQs									
			. ~ 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
			·		\pm			Ì				
_					Ţ							
-					+							
-		······································			\top						avin	-
								No G	rour	dwater		

CLIENT: Synero PROJECT: Tentati	iy ive Tract 60258			DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 5/6/04		TRE NO.			LOG
EXCAVATION METHO	D: Track-Moun	ted Backhoe w/2	4" bucket	ELEVATION:					
<u>ш</u> ж с	<u></u>					· · · · · · · · · · · · · · · · · · ·	LAE	ORAT	ORY TESTS
(0)	USCS SYMBOL		DESCRIPTION			ATTITUDES	Moisture Content (%)	Dry Density (pcf)	Other Tests
0 - - 5- - 10- - - - 15- - - - - -	sandy silts	tone; moderatel;	y hard to har	and reddish-brown d; dry to damp; loca d cobbles in sandsto	1	B: N24W,3NE			
TOTAL DEPTI	H: 5.5 feet		N15	E→		SCALE: 1 ir	nch =	5 f	eet
		TQs			1-1-	1 1	T T		
				+				Cavir Groui	ng dwater

CLIENT	: CT:	Syne Tenta	rgy ative	Tract 60258	3		JOB NO: DATE:	04-803S-4 6/11/04	4	ı				LOG
							LOGGED EXCAVAT	INJU_		_ N	10.	T-:	70	
EXCAV	ATION	N METH	IOD:	Track-Mour	nted Backhoe w/2	4" bucket	ELEVATION	5/6/04 DN:	}	_				
DEPTH (feet)	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION				ATTITUE	DES		Dry Density (pcf)	ORY TESTS Other Tests
5-				sandstone	K; TQs (0-5.5') lish-brown sand and pebbly sand al laminations; c	lstone; moder	ately h	vish-gray ard to hard		3: N68E,8NW				
15 -											:			
TO	ΓAL	DEP	TH:	5.5 feet	T	N18E	<u>-</u>			SCALE	E: 1 in	ch =	5 fe	et
- - -							+							
- - -	T				TQs									
 - -							+ + + + + + + + + + + + + + + + + + + +							
- -					·		+						Cavin Groun	g dwater

						Lionaro	-	1			
CLIENT: PROJECT:	Syn	ergy tative	Tract 60258			JOB NO: 04-803S-4		TR	ENC	HI	_OG
II	1611	.auve	11aul 00208	•		LOGGED BY: MJD		1). T-		- -
¥						EXCAVATED: 5/6/04			· • <u> </u>		
EXCAVATI	ON MET	HOD:	Track-Moun	ted Backhoe w/2	4" bucket	ELEVATION:					
اس	S S	۲							LAE	I - I	ORY TESTS
II 등 등 I		MBC							e (%)	bcl	
DEPTH (feet)	AMPLE NUMBE GRAPHIC LOG	USCS SYMBOL		[DESCRIPTION			ATTITUDES	Moisture Content (%)	Dry Density (pcf)	Other Tests
SAM	SAMPLE NUMBER GRAPHIC LOG	nsc							S S	Del	
"-0 '	J.	-	BEDROC	K; TQs (0-6')		and conglomerate;	Арх	t. B: N85W,3NE			
			@ 0' Light	t yellowish-brow	n sandstone	and conglomerate; y bedded; scattered					
"]			cobbles	, mara w naru, c	.amp, crudel	, vouceu, scattered					
5-											
			COMMEN Possible O	<u>TS</u> : t?=very flat bedd	dina						
			Cobble and	t:=very hat bedo I boulder lag at:	surface						
1 1											
10											
]								
15							}				
20 -		1	<u> </u>								<u></u>
TOTA	AL DE	PTH:	6 feet	T	N12	'E→		SCALE:	1 inch =	5 fe	eet 1
 						+					
Ľ						İ					
1											
 	ŢT	+-			1:1:1:	, / 			1 1 1	1-	1
<u> </u>	, ,		-			ĭ(†					1
						# I					
<u> </u>				TQS	. 0 .]					
		-			6/11/1	/ 		·			
						1					
		1		1	1	T	1				1
		- 1				+		ł			}
						+					
									No (Cavir	ng

CLIENT: Synergy	JOB NO: 04-803S-4	TDF	NCH LOC
PROJECT: Tentative Tract 60258	DATE: 6/11/04	1	NCH LOG
	LOGGED BY: MJD	NO.	T-72
	EXCAVATED: 5/6/04		
EXCAVATION METHOD: Track-Mounted Backhoe w/24" bucket	ELEVATION:		
D C G G			LABORATORY TESTS
SAMPLE TYPE SAMPLE TYPE GRAPHIC LOG USCS SYMBOL USCS SYMBOL			%) %)
DESCRIPTION OF THE NUMBER OF T	DN	ATTITUDES	Other Tests
SAMPLE TY (feet) SAMPLE TY AMPLE TY OSCS SYME USCS SYME			Moisture Content (%) Dry Dry Lests Lests
SOIL; soil (0-1')	o aaft: maathaina: waida		
@ 0' Brown sandy clay with pebbles QUATERNARY TERRACE DEPO @ 1' Grades to reddish-brown sandy	OSITS; Qt (1-6')		
@ 1' Grades to reddish-brown sandy	y, pebbly claystone with		
scattered cobbles; moderately hard t voids; grades sandier and pebblier w			
5 color; slightly fractured; highly weat			
5.5'; minor caliche			
4			
10 -			
1			
1			
1			
15 -			
1			
20 -			
TOTAL DEPTH: 6 feet N	l67E→	SCALE: 1 ir	nch = 5 feet
-	+		.
-	+		1
-	+		
Soil			
	<u>I=+ </u>		
	<u> </u>		
	· -]		
[
_	1		
_	1		
_	1	•	
-	+		No Caving
_		1	No Groundwater

CLIENT: Synergy PROJECT: Tentativ	e Tract 60258	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 5/9/04	TREN	CH LOG -73
EXCAVATION METHOD:	Track-Mounted Backhoe w/24	5/6/04		
	T			LABORATORY TESTS
DEPTH (feet) SAMPLE TYPE SAMPLE NUMBER GRAPHIC LOG USCS SYMBOL	DE	ESCRIPTION	ATTITUDES	Content (%) Dry Density (pcf) Content (%)
5-	cobbles and boulders; moder granite and anorthisite boul bedrock below; less clay with	vn pebbly, clayey sandstone with rately hard; damp; massive; common ders; slightly erosional contact with h depth		
	BEDROCK; TQs (5.5-7') @ 5.5' Reddish-brown sandy massive; scattered pebbles	v siltstone; hard to very hard; dry;	B:N80W,17NE	
10-	COMMENTS: Hard to dig at 5.5-7'			
15 -			·	
TOTAL DEPTH:	7 feet	N60E→	SCALE: 1 inch) = 5 feet
_		Qt -		
-	Tas			
				lo Caving Io Groundwater

CLIENT: PROJECT	S F: T	Syner enta	gy tive	Tract 60258			DATE.	MJU			EN D. T		LOG
EXCAVAT	TION I	METH	OD: .	Track-Moun	ted Backhoe w/2	4" bucket	ELEVATION	3/14/04	+	1			
	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION				ATTITUDES	Moisture	Content (%) Dry Density (ocf)	Other Tests
5				cobbles; me	NARY TERRA gish-brown silty oderately hard; ades sandier wit ne	damp to mois	t; massiv	e to crude	ly	px. B: Subhorizon	tal		
20 -	<u> </u>	\		0 5-4	/	NEET				00415	4 !		"
TOT/	AL L	ν Ε Ρ	H:	6 feet		N55E	1 + + + + + + + + + + + + + + + + + + +	T T T		SCALE:	Inch	= 5 1	eet
- - - - - -					Qt		+ + +						
_							+					Cavii Grou	ng ndwater

(feet) SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE GRAPHIC LOG USCS SYMBOL NOITHINGS	s	ATTITUDES	Moisture Content (%)		ORY TESTS
- & - -	ls B. N		1-8	Dry Density (pcf)	Other Tests
SLOPEWASH; Qsw (0-2.5') @ 0' Reddish-brown silty, clayey sand with pebbles and scattered cobbles; soft to medium dense; damp; roots; voids BEDROCK; TQs (2.5-7') @ 2.5' Light-gray sandstone; moderately hard to hard; dan massive to vaguely bedded; local pebble lenses; scattered cobbles; slightly fractured COMMENTS: Cobble/boulder lag at surface	ı	N73W,8NE			
		SCALE: 1	inch =	<u> </u>	<u> </u>
Qsw —			1 1		
TQs -				Cavir	ng ndwater

CLIENT		Syne	rgy				JOB NO:	04-803S-4		T		NC	U	00	
PROJE	CT:	Tent	ative	Tract 60258	3		DATE:	6/11/04)				LOG	
							LOGGED E	MJD		N	O. _.	T-7	<u> 6</u>		_
							EXCAVAT	5/14/04	4						
EXCAV	ATIO	NMETH	IOD:	Track-Mour	nted Backhoe w/2	24" bucket	ELEVATIO	N:							
Ţ,	, K	(0										LAE	ORAT	ORY TES	TS
_ }	AMPLE NUMBE	GRAPHIC LOG	USCS SYMBOL						}				ક		
DEPTH (feet)	<u>.</u> ≥	呈	SYN			DESCRIPTION				ATTITUDE	ES	eter (%)	<u>5</u>	Other	.
		lαγ	SS									Moisture Content (%)	Dry Density (pcf)	Tests	
6	SAMPLE NUMBER	1 20	S							•		1-8	ది		
0				cobbles; so	ASH; Qsw (0-3) vn to reddish-broft to medium de K; T'Qs (3.5-8') lowish-gray peb	nse; dry to da	amp; roo	ts; voids		px. B: N32W,6N	Œ				
5				sandy silts	stone; moderatel crudely bedded;	y hard to har	d; damp	; slightly	JIOWII				i		
				COMMEN											
10 —				Copple/bor	ılder lag at surf										
													:		
4															
-															
15															
+															
-	}														
+															
-															
20 —										·					
то	TAL	DEP	TH:	8 feet		N75I	E→			SCALE	: 1 in	ich =	5 fe	et	
_							1								
_							+							1	
_					}		1 +			j					
_				_			1+								
1 1	-1		+	$\overline{}$	Li ri r	Q _{SW}	1	111	+	1		7-1		+	
- `	•	-		•			1+				•	•	٠		
-					1		1+								
- -						. 0	1 ‡								
					,										
_						TQs	I								
_							I		1					}	
_							I			}					
			ļ												
							+						Cavin	1-	
												No C	Frour	dwater	

CLIENT: PROJECT:		ative	Tract 60258			EVOAL/ATED.	•	1	ENC T-		_OG
·		ī	rack-Moun	ted Backhoe w/2	24" Ducket			<u> </u>	1 1 1 1	IORAT	ORY TESTS
DEPTH (feet) SAMPLE TYPE	GRAPHIC LOG	USCS SYMBOL		J	DESCRIPTION			ATTITUDES	Moisture Content (%)		Other Tests
5			@ 0' Brow with pebbl damp; root QUATER @ 3' Grad with cobbl	ASH; Qsw (0-3) on to reddish-broses and scattered as; voids NARY TERRA es to reddish-broses; soft to media dded to massive	own silty, said cobbles; sof CE DEPOS rown silty, claim dense; loc	t to medium de. ITS; Qt (3-10') ayey, pebbly sar cally friable; dar	nse; dry to ndstone mp;				
TOTAL	DEP	TH:	10 feet		N83	SW→		SCALE: 1	inch =	5 fe	eet
				Qsw Qt							
									Cavir Grour	ng ndwater	

CLIENT:		Syne	rgy					====			JOB		04-80	3S-4			-		·NIC	·LI I	000
PROJECT	: '	Tenta	ative	Tract 60	258						LOG	-	6/11/0	04				10.			LOG
												AVATE		IJD /14/04	1		Į.	4 0.		10	
EXCAVAT	ION	METH	OD:	Track-M	ounted	d Bac	khoe	w/24	1" buck	et	ELE	/ATION	₹:	14/04	<u>†</u>						
اسا	ER	Ŋ	Ä													T			LAI	BORAT	ORY TESTS
DEPTH (feet) SAMPLE TYP	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL					D	ESCRIF	PTION							ATTITU	IDES	Moisture Content (%)	Dry Density (pcf)	Other Tests
5				QUAT @ 0' R very ha COMM Too har	ırd; dr ENTS	y to (<u>\</u> :	lamp;	RAC ndy ; ma	EE DE , silty ssive	POSI'claysto	<u>rs;</u>	Qt (((with)-3.5 ' pebb) les; h	ard t	1	orizontal				
15 —	ΔΙ	DEP		3.5 fe	eet .		4		7. T - 4	N35V	V						SCAL		nch =	5 f	eet .
1017	4L		ιп.	3.5 16	361					VCCN	v→						SCAL		nen –	ا <u>د</u>	3et
 - - -] " "					+	- - -		 			, , .			·	
		1		1 1	1	-			Qt			- - - -		. I			. 1	1			
- -				i.					-			- - 								Cavir	ng ndwater

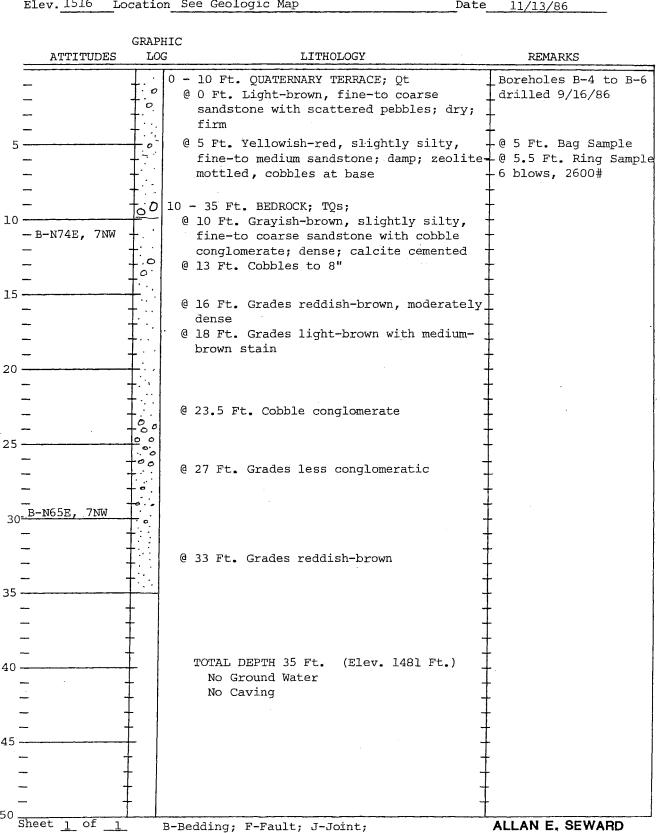
CLIENT: PROJECT: EXCAVATION		itive	Tract 60258 Track-Moun	ted Backhoe w/2	24" bucket	JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 5/14/04 ELEVATION:			NC T-7		LOG
DEPTH (feet) SAMPLE TYPE	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION	<u> </u>		ATTITUDES		Dry Density (pcf)	ORY TESTS Other Tests
5			BEDROC @ 0' Redd hard; dry t lenses; ma COMMEN Hard to dig	o damp; scatter ssive <u>TS</u> :	brown sandy ed pebbles; lo	siltstone; hard to ver	ry				
TOTAL	_DEP	ΓH:	6 feet		N37	W→		SCALE: 1	inch =	5 fe	et
- - - - - -				TQs			1 1		No. C	Covin	
						+			No C		g dwater

CLIENT:	Syne	rav				JOB NO: 04-803S-	.4	TD	ENC	LIF	00
PROJECT:	Tent	ative	Tract 60258	3		DATE: 6/11/04		1	ENC		_OG
						LOGGED BY: MJD		│ NC). T-8	30	
						EXCAVATED: 5/14/0	04				
EXCAVATION	N METH	IOD:	Track-Mour	nted Backhoe w/2	4" bucket	ELEVATION:					
1 1 9	٤								LAE	ORAT	ORY TESTS
DEPTH (feet) SAMPLE TYPE	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION			ATTITUDES	Moisture Content (%)	Dry Density (pcf)	Other Tests
5			BEDROC @ 1.5' Yel scattered of structurel COMMEN Cobble/box	cobbles; moderates; slightly frac) sh-brown silty sely hard to he tured; highly	, pebbly sandston ard; damp; massiv	e with				
TOTA	L DEP	TH:	10 feet		N23V	V→		SCALE: 1	inch =	5 fe	et
		Τ		1	1,201						_ <u></u>
_						+					
_		1				+					
-				, i		+ '					
-						+					
 	Qsw										
- - -				TQs		+ + +					
-									avin Froun	g dwater	

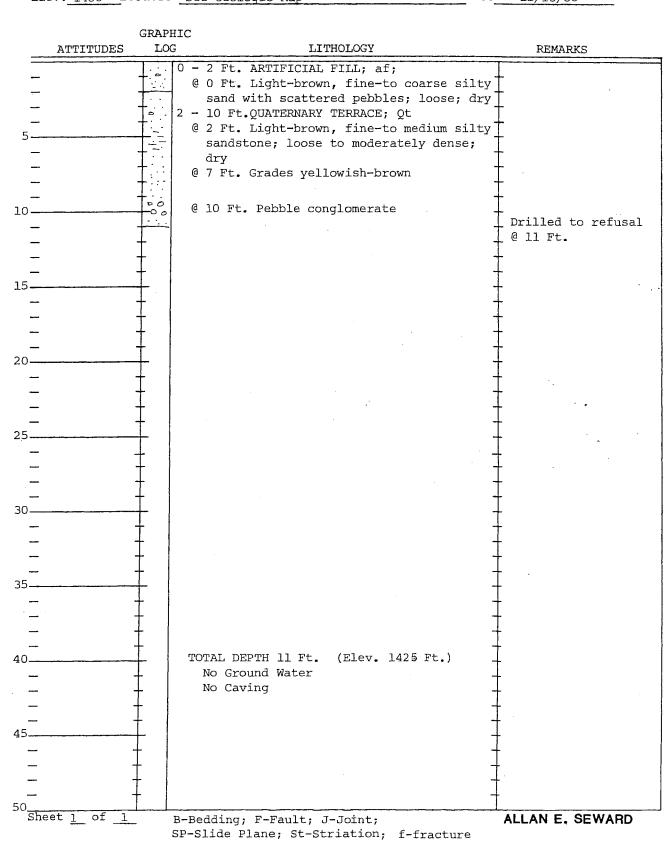
CLIENT: PROJEC	Г: -		ntive	Tract 60258			JOB NO: 04-803S-4 DATE: 6/11/04 LOGGED BY: MJD EXCAVATED: 5/14/04 ELEVATION:		TRENCH LOG NO. T-81			
EXCAVA	HON	MEIH	00: .	Track-Moun	ted Backhoe w/2	4" bucket	ELEVATION:		<u> </u>			
, DEPTH (feet) SAMPLE TYPE	SAMPLE NUMBER	GRAPHIC LOG	USCS SYMBOL			DESCRIPTION			ATTITUDES	Moisture Content (%) BO Dry Dry Density (pcf)	ORY TESTS Other Tests	
0 5 10 15 20				medium de QUATER @ 4.5' Gra	lish-brown silty, ense; dry to dam NARY TERRA des to orangish-	p; roots; void <u>CE DEPOSI</u> brown pebbly	ith pebbles; soft to s FS; Qt (4.5-9') r, cobbly sandstone edded; highly weat.	with hered B:H	orizontal			
TOT	AL	DEP	ΓH:	9 feet		←Dı	e N		SCALE: 1 i	nch = 5 fe	et	
				coil	Qt Ot					1 1 1	·	
							1			No Cavin No Groun		

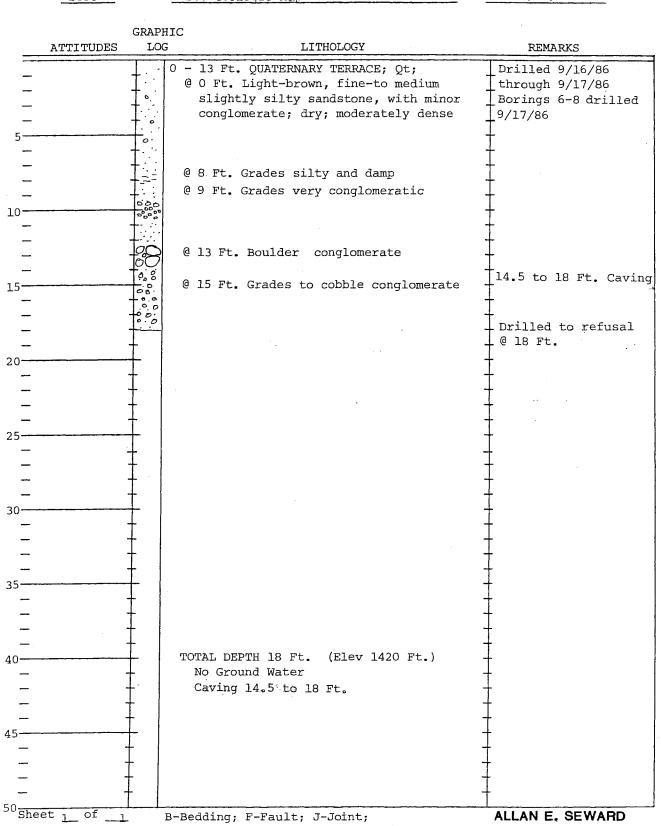
•		DRILLING LOG		
Project PALMER	Santa Ca	atarina TT 31236	Borin	g No. B-2
Method of Dri	lling 24" I	Bucket Auger Logged by	GF Job No	0. 6-803-4
Elev. 1509 Lo	ocation Sec	e Geologic Map	Date	11/13/86
	CDADUTC			
ATTITUDES	GRAPHIC LOG	LITHOLOGY		REMARKS
	1 B-Bed	TAL DEPTH 14.5 Ft. (Elev. 1494) Go Ground Water Go Grou	e sand- firm; damp rm; damp	@ 7.5 Ft. Ring Sample. 7 blows, @ 2600# @ 9 Ft. Bag Sample and Ring Sample. 8 blows

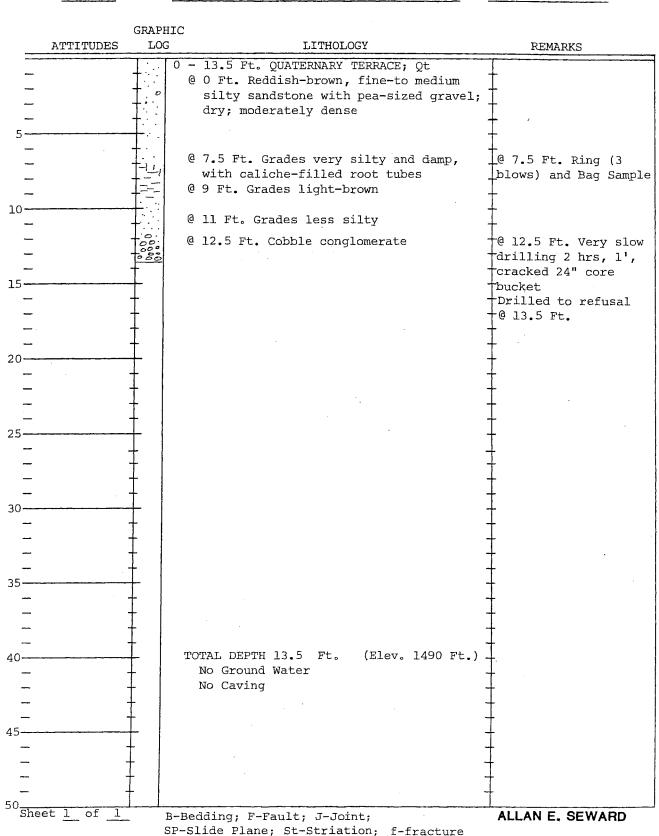
B-Bedding; F-Fault; J-Joint; SP-Slide Plane; St-Striation; f-fracture

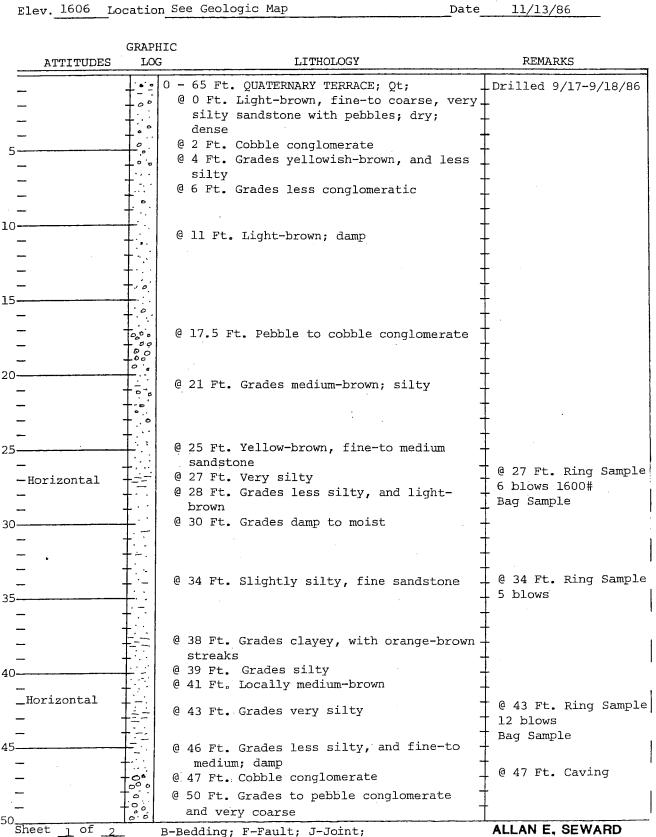

Project_	PALMER	Santa	Catarina TT	31236	_Boring	No. _{B-3}
Method o	f Drillin	g_24"	Bucket Auger	Logged by GF	_Job No.	6-803-4
Elev.151	2.5 Locat	ion Se	ee Geologic Ma	p	Date	11/13/86

	GRAPHIC		
ATTITUDES	LOG	LITHOLOGY	REMARKS
	1-10	- 6 Ft. QUATERNARY TERRACE; Qt;	Excavated on 9/15/86
_	$1:\cdot$	@ 0 Ft. Light brown, medium-to coarse,	through 9/16/86
-	$T \cdot 1$	slightly silty sandstone with scattered	
-	T.:	cobbles; firm; dry to damp	T
-	T 0 6	- 71.8 Ft. BEDROCK; Tos;	T
	00	@ 6 Ft. Light brown, medium-to coarse	<u> </u>
=	+	sandstone; firm; damp	†
-	+ : :	sandscone, rring damp	<u>†</u>
-	+		†
-	+3.1	@ 9 Ft. Yellowish-red, fine silty sand-	+ .
		stone	@ 10 Ft. Ring Sample
-	+	@ 11 Ft. Fine-to medium sandstone; dense;	ll blows
_		zeolite -mottled	40 11 Ft. Ring Sample
-B-N78W, 7NE	11	@ 13.5 Ft. Grades to light brown, fine	9 blows .
- (approx.)	1		1
(approx.)	10:	silty sandstone	1
	1.00	@ 15 Ft. Medium-to coarse sandstone;	1
•	T- 1	grades loose; scattered cobbles and	Ţ
•	† 1	pebbles	†
•	† 1		†
=	+	·	† .
	+ [•	†
•	+ 1		+
•	+		+
-	1		-
<u>-</u>	100		4 @ 24 Ft. Seepage
		@ 25.5 Ft. Yellowish-brown, fine-to	26.5 to 27.6 Ft.
_		medium silty sandstone; dense	Seepage
	I^{-1}		@ 26.5 Ft. Bag Samp:
	1	@ 27 Ft. Fine, very silty sandstone	@ 28 Ft. Bag Sample
	T	@ 28.5 Ft. Light brown, medium-to coarse	@ 29 Ft. Seepage and
•	00	sandstone with pebbles and cobbles	slight caving
	十::	@ 29 Ft. Moist	@ 30 Ft. Seepage
•	†.0.	•	@ 33 Ft. Ring Sample
-	+	A 22 ml - 11-11-11 - 1 - 1-11-1 - 1-11-1	
B-N80W, 8NE	+0.	@ 33 Ft. Yellowish-red, zeolite-mottled .	1600 #, 19 blows
•	+ :: 1		+
 	+::1		†
-	+···	•	@ 36 Ft. Seepage
•	+	•	+
<u>-</u>	1-3-		+
	1.1		ļ ·
			<u>.</u>
	T·o.	·	1
	I - 1		1
•	T	@ 43 Ft. Grades less silty	1
•	T . 1		Ţ
•	T.".	·	T ·
	9	0.46 5 50 1.46 50 50 50 5	†
	100	@ 46.5 Ft. to 48 Ft. Cobble conglomerate -	+@ 46 Ft. Slow drill-
	+2001	· · · · · · · · · · · · · · · · · · ·	ing
B-Horizontal	+~.	@ 48 Ft. Medium-brown, fine, very silty -	-0 48 Ft. Ring Sample
	+ .	sandstone -	800 #, 50/11"overdri
	سلنند	@ 50 Ft. Yellowish-red, silty sandstone	
heet 1 of 2	B-	-Bedding; F-Fault; J-Joint;	ALLAN E. SEWARD

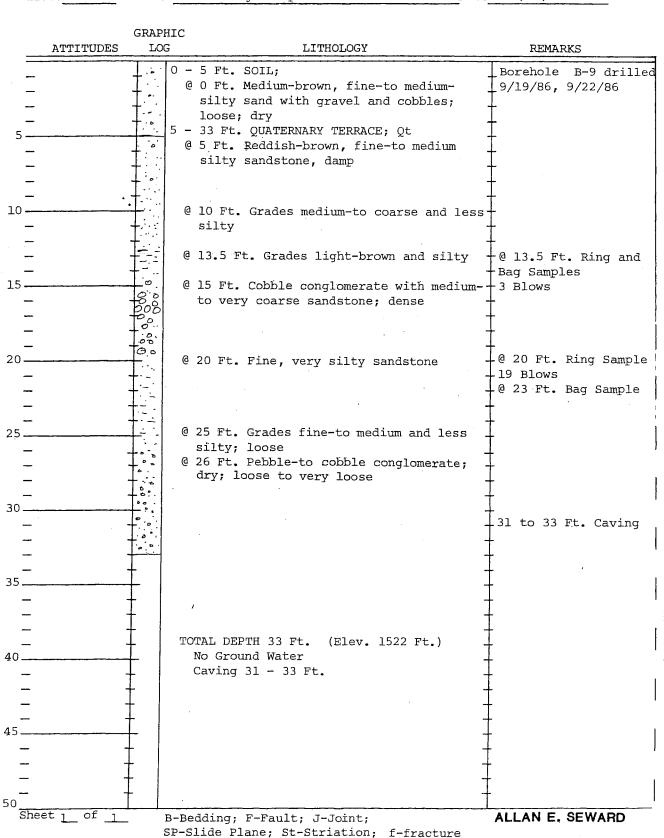

Project_	PALMER	Santa	Catarina	TT	31236			Bor	ing 1	No	B-3	
Method c	of Drilling	24"	Bucket Auger	<u> </u>	Logged	by_	GF	Job	No.	6-80	3-4	
Elev.151	2.5 Locat:	ion Se	e Geologic N	1ap				Date	!	11/	13/86	

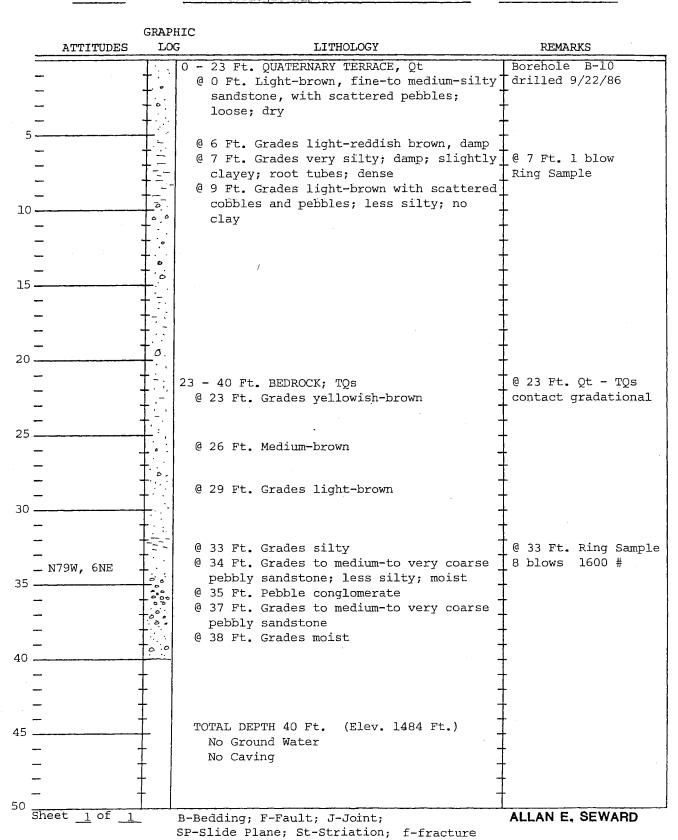

Project_	PALMER	Santa	Catarina	TT	31236		Boring	No. B-4	
Method o	of Drillin	ıg 24"	Bucket Auge	er_	Logged by	GF	Job No.	6-803-4	·
Elev. 15	16 Locat	ion_Se	e Geologic	Mar	o .		Date	11/13/86	

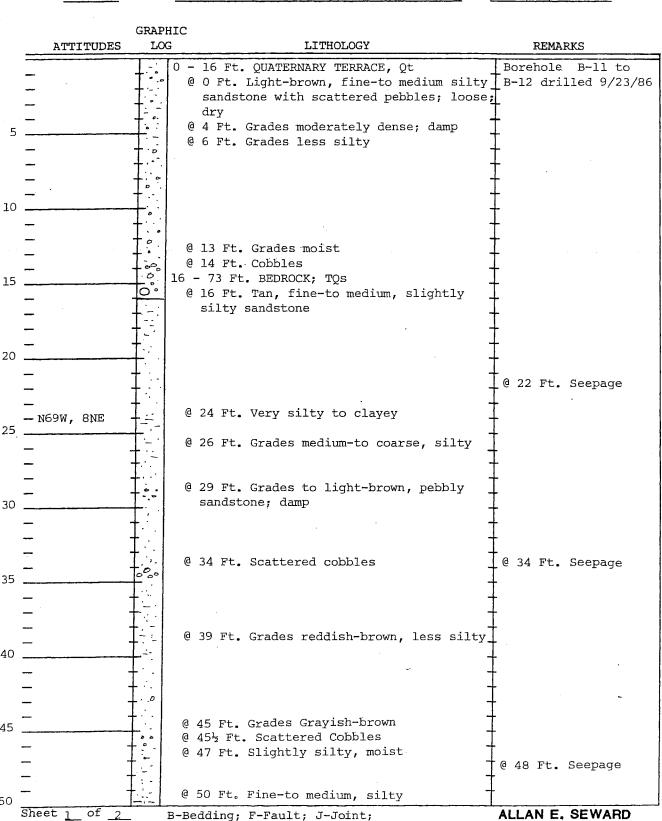

Project_	PALMER	Santa	Catarina	TT	31236			Boring	NoB-5	_
Method o	of Drillin	g 24"	Bucket A	uger	Log	gged	by GF	Job No.	6-803-4	
Elev. 14	136 Locat	ion Se	e Geologi	c Mar)		•	Date	11/13/86	


Project	PALMER	Santa	Catarina	TT	31236		_Boring	No. B-6	
Method o	of Drilli	ng 24'	' Bucket A	uger	Logged	by GF	Job No.	6-803-4	
Elev. 14	138 Locat	tion s	See Geolog	ic Ma	q		Date	11/13/86	

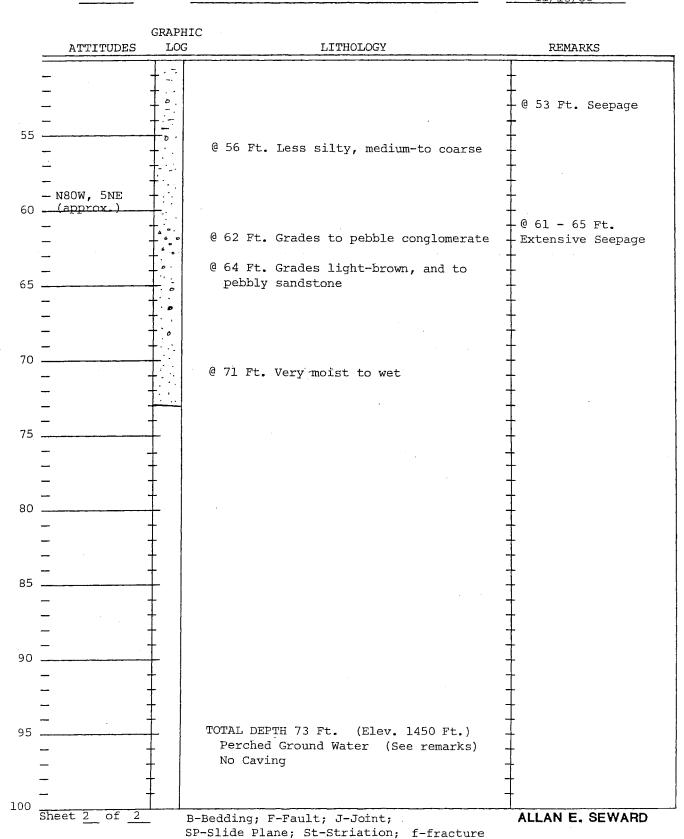

Project	PALMER,	Santa	Catarina	TT	31236	_Boring	No. B-7
Method (of Drilling	g24"_	Bucket Auge	er_	Logged by GF	_Job No	6-803-4
Elev.140	04 Locat:	ion Se	ee Geologic	Maj	D	Date	11/13/86


Project PALMER Santa Catarina TT 31	236 Boring No. _{B-8}	_
Method of Drilling 24" Bucket Auger	Logged by GF Job No. 6-803-4	
Elev. 1606 Location See Geologic Map	Date 11/13/86	

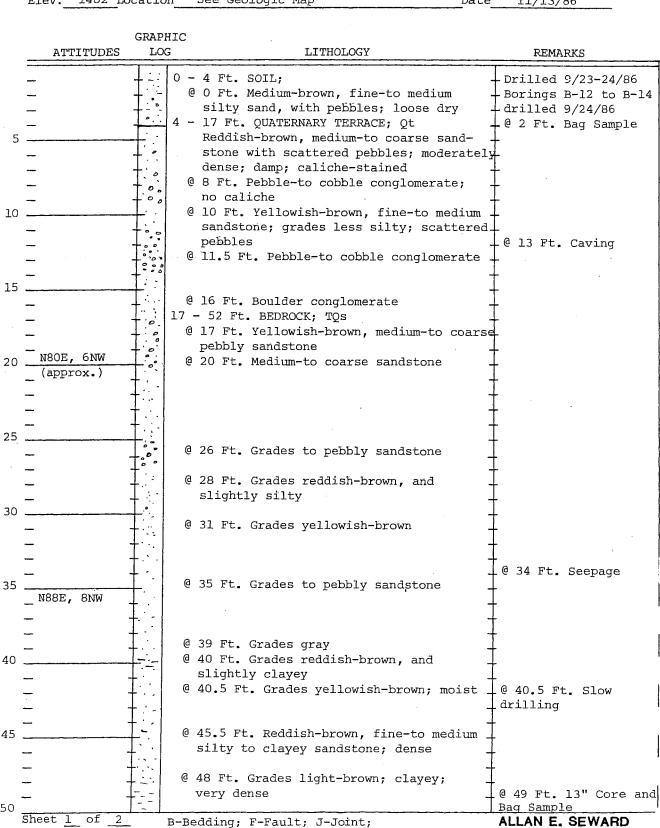

Project	PALMER	Santa	Catarina	$_{ m TT}$	31236	Boring	No. B-8	
Method	of Drilli	ng 24'	' Bucket	Auger	Logged by	GF Job No.	6-803-4	
Elev. 1	506 Loca	tion s	See Geolo	gic Ma	.p	Date	11/13/86	


Project PALMER	Santa Catarina TT 31	236	Boring No. B-9	
Method of Drill	ing 24" Bucket Auger	Logged by GF	Job No. 6-803-4	
Elev. 1555 Loca	ation See Geologic Map		Date 11/13/86	

Project PALMER Santa Catarina TT 3123	6	_Boring	No. B-10
Method of Drilling 24" Bucket Auger	Logged by GF	_Job No.	6-803-4
Elev. 1524 Location See Geologic Map		Date	11/13/86

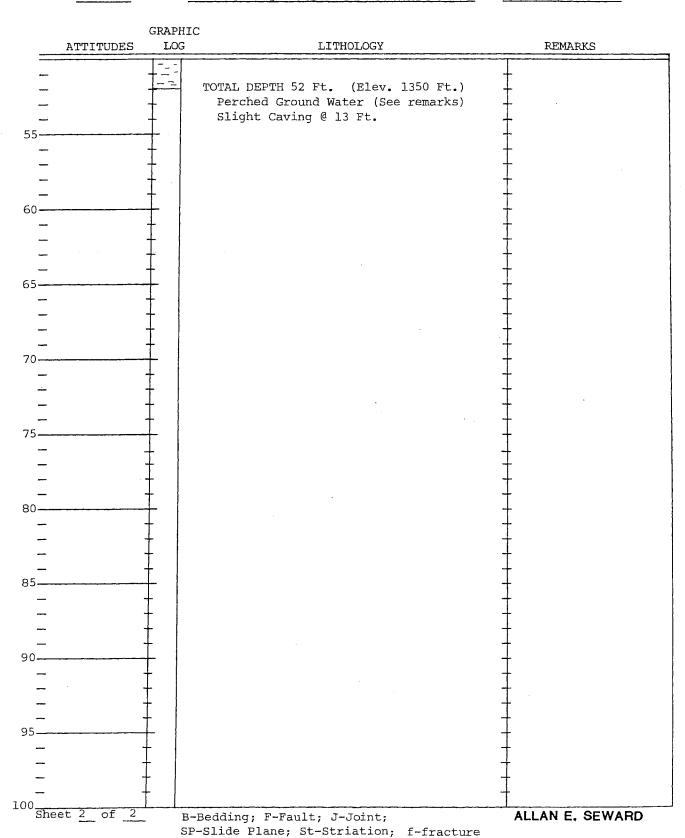


Project_	PALMER	Santa	Catarina	TT 31236	5		_Boring	No. B-11
Method o	of Drillin	g 24"	Bucket Aug	er	Logged	by GF	_Job No.	6-803-4
Elev. 15	523 Locat	ion S	ee Geologic	Map			Date	11/13/86



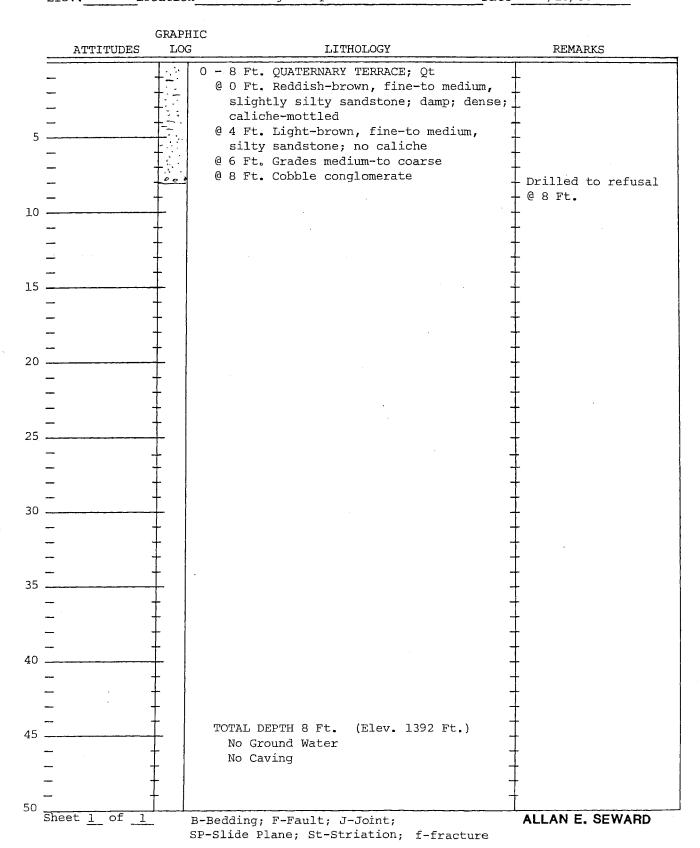
SP-Slide Plane; St-Striation; f-fracture

Project	PALMER	Santa	Catarina	$_{ m TT}$	31236		_Boring	No. B-11	
Method	of Drillir	ng 24'	Bucket	Auger	Logged	by GF	_Job No.	6-803-4	
Elev. 1	523 Locat	ion S∈	ee Geolog	ic Map			Date	11/13/86	



Project	PALMER	Santa	Catarina T	T 31236		_Boring	No. $B-12$
Method	of Drilling	24"	Bucket Auger	Logged b	y_GF	Job No.	6-803-4
Elev	1402 Locati	.on	See Geologic N	lap		Date	11/13/86

SP-Slide Plane; St-Striation; f-fracture


Project PALMER Santa Catarina	TT 31236 Boring No. B-12
Method of Drilling 24" Bucket Aug	ger Logged by GF Job No. 6-803-4
Elev. 1402 Location See Geologic	

SP-Slide Plane; St-Striation; f-fracture

Project_	PALMER	Santa	Catarina	TT	31236	_Boring	No. B-14
Method o	f Drilling	24" 1	Bucket Auger		Logged by GF	_Job No.	6-803-4
Elev. 14	.00 Locati	on Se	ee Geologic	Mar)	Date	11/13/86

			:
			-
			; !
			i !
			1
			f .
			!
			}
			•
	·		
			!
			· !

PANY: Tr IOD: Bu Te	Tract 60258 ri-Valley/Ray ucket-Auger (1 elescoping Ke 55=3921 lbs; 55- woistner content (%) woistner content (%)	lly Ba	531 lbs; 84-114=1407 lbs Description	DATE: 6/11/04 LOGGED BY: MAS DRILLED: 2/13-2/16/04 HOLE DIA: 24" AVERAGE DROP (in.): 12" ELEVATION: 1622'	BORING NO.	B-15
PANY: Tr IOD: Bu Te ITS: 2 lbs; 23-	ri-Valley/Ray ucket-Auger (1 elescoping Ke -55=3921 lbs; 55-	B4=25 NBOL NBOL	531 lbs; 84-114=1407 lbs Description	6/11/04 LOGGED BY: MAS DRILLED: 2/13-2/16/04 HOLE DIA: 24" AVERAGE DROP (in.): 12"		
PANY: Tr IOD: Bu Te ITS: 2 lbs; 23-	ri-Valley/Ray ucket-Auger (1 elescoping Ke -55=3921 lbs; 55-	B4=25 NBOL NBOL	531 lbs; 84-114=1407 lbs Description	DRILLED: 2/13-2/16/04 HOLE DIA: 24" AVERAGE DROP (in.): 12"	BORING NO.	B-15
Te HTS: 2 lbs; 23-	ucket-Auger (1 elescoping Ke -55=3921 lbs; 55	B4=25 NBOL NBOL	531 lbs; 84-114=1407 lbs Description	HOLE DIA: 24" AVERAGE DROP (in.): 12"	BORING NO.	B-15
Te ITS: 2 lbs; 23-	elescoping Kel	B4=25 NBOL NBOL	531 lbs; 84-114=1407 lbs Description	AVERAGE DROP (in.): 12"	BORING NO.	B-15
16 fTS: 2 lbs; 23-	-55=3921 lbs; 55-	SYMBOL SYMBOL	531 lbs; 84-114=1407 lbs Description	ELEVATION:	BORING NO	B-15
2 lbs; 23-		SYMBOL	Description	1622'		
GRAPHIC Dr. C	ATTITUDES, DRY DENSITY (pc)/ MOISTURE CONTENT (%)	ISCS SYMBOL				
0 5)	Bedrock: color, lithology; h	ncy/density; moisture; color; other ardness; moisture; other		Remarks
2000	Contact:		roots, rootlets, pinhole			© 0-15' bulk sample
80000	131/1.9 B:Horizontal		@ 4' pale yellowish-bro damp; gravelly channe	own to light brown sandsto	ne w/gravel; dry to	
000	B:Horizontal 133/4.7		@15.5 same; local finel	y laminated crossbeds		
	B:Horizontal			lded light brown sandy silt	stone; stiff; damp	
\$ 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B:Horizontal Apx. B: Horizontal 130/3.6		@30' same; cobbles ≤ 6	" in diameter		
	Qt	B:Horizontal 131/1.9 B:Horizontal 133/4.7 Qt B:Horizontal 113/4.7 Apx. B: Horizontal O O O O O O O O O O O O O O O O O O O	B:Horizontal 133/4.7 B:Horizontal 133/4.7 B:Horizontal 133/4.7 B:Horizontal 133/4.7	B:Horizontal B:Horizontal B:Horizontal 133/4.7 B:Horizontal 117/13.1 @ 20' same; w/interbed @ 22' channel @ 22' channel	B.Horizontal B.Horizontal	## Horizontal Till/1.9 B.Horizontal B.Horizontal 133/4.7 @ 4' pale yellowish-brown to light brown sandstone w/gravel; dry to damp; gravelly channels @ 4' pale yellowish-brown to light brown sandstone w/gravel; dry to damp; gravelly channels @ 125/1.9 @ 15.5 same; local finely laminated crossbeds @ 20' same; w/interbedded light brown sandy siltstone; stiff; damp @ 22' channel @ 22' channel

CLIENT:	Sv	nergy				JOB NO.:	04-803S-4		- - - - - - - - - -
PROJEC	T:					DATE:	6/11/04	DRILL HOL	E LOG
}	Te	ntative	Tract 60258			LOGGED B	Y: MAS		
DRILLING	COM	2 A KIV-	i-Valley/Ray			DRILLED:	2/13-2/16/04		ľ
DRILLING	METH	IOD:	ıcket-Auger (114'	Ria)	HOLE DIA:	24"		
HAMMER	TYPE:		lescoping Ke			AVERAGE I	DROP (in.): 12"	BORING NO.	B-15
DRIVING		HTS:				ELEVATION		- BOMMO NO. —	D-13
<u>0-28</u>	3=5952	2 lbs; 23-		84=2	531 lbs; 84-114=1407 lbs		TOLL		<u> </u>
DEPTH (feet) SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, DRY DENSITY (pcf)/ MOISTURE CONTENT (%)	USCS SYMBOL	Description Soils: description; consister Bedrock: color, lithology; ha			•	Remarks
40	5 13	0000	129/2.0					- - - -	
45		00.00	B:Horizontal					_ 	
		05-000 05	 _XB:N55E,26NW 		@ 47' cross bedded			- - -	 - -
50	6 10/3		118/3.3		@ 50' same; cobbles and	d some b	$oulders \leq 1.5$		 - - -
55		*0°0°	B:Horizontal						
60		0°0°0°	 B:Horizontal						<u> </u> - - -
	11/4"	6.00 00 00 00 00 00 00 00 00 00 00 00 00	-						
65		803.	_						
		0, 2,000 2,000 2,000 2,000	- - -					-	
70	13	0 3000	116/2.5 - B:Horizontal					- - -	
75	-	00000	-						

	===						T	
CLIENT:	Svi	nergy				JOB NO.: 04-803S-4		
PROJECT	:					DATE: 6/11/04	DRILL HOL	E LUG
	Tal	ntativo	Tract 60258			LOGGED BY: MAS		
DRILLING	COME	PANY:	Tract 60258 i-Valley/Ray			DRILLED: 2/13-2/16/04		1
DRILLING	METH			4 4 41	D:\			
HAMMER		DL	<u>icket-Auger (</u>			AVERAGE DROP (in.):	DODING NO	
Telescoping Kelly Bar DRIVING WEIGHTS:						ELEVATION:	BORING NO.	B-15
0-28	=5952	lbs; 23-	55≂3921 lbs; 55	84=2	531 lbs; 84-114=1407 lbs	1622'		
DEPTH (feet) SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, DRY DENSITY (pcf)/ MOISTURE CONTENT (%)	USCS SYMBOL	Description Soils: description; consiste Bedrock: color, lithology; h	ency/density; moisture; color; other ardness; moisture; other		Remarks
85		6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	126/2.8	1	Total depth 80' No caving Ravelling @ 4-80' No groundwater			
100								

CLIENT	r:	Sv	nergy				JOB NO.: 04-803S-4	DDU :	FIGO					
PROJE	CT:	:	·-·31			***************************************	DATE: 6/11/04	DRILL HOI	_E LOG					
		Te	ntative	Tract 60258			LOGGED BY: MAS							
DRILLIN	٧G	COM		i-Valley/Ry			DRILLED: 2/16-2/19/2004							
DRILLIN	٧G	METH	OD:		1101	Dia)	HOLE DIA: 24"							
HAMME	R.	TYPE:		icket-Auger (rig)	AVERAGE BROD (C.)	BODING NO	5 40					
DRIVIN	G V	VEIGH	<u>I €</u> ITS:	lescoping Ke			IL EVATION.	BORING NO	B-16					
0-2	28=	5952	lbs; 28-	55=3921 lbs; 55	-84=2	531 lbs; 84-114=1407 lbs	1612'							
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, DRY DENSITY (pcf)/ MOISTURE CONTENT (%)	USCS SYMBOL		escription Soils: description; consistency/density; moisture; color; other Bedrock: color, lithology; hardness; moisture; other							
5		4		126/1.7		rootlets, voids ≤ 1/8	vn silty clayey sand w/grave		⊕ 0-4 Bulk Sample					
10		4 4 4	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	- - -		@ 5' light brown to pal dense; dry to damp; co	RACE DEPOSITS; Qt (5- le; yellowish-brown silty sar obbles; gravel channels	.90') adstone w/gravel;						
		6		B:Horizontal 135/1.0				- - - -	 					
15		4/2*	000	114/2.9 - Apx. XB:N40E, 6SE				- -	 					
20		2	0000	130/3.2				- - -	+					
		8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	B:Horizontal	4				+					
25			Qt	-					† " † †					
20			80 0 95 00 60 8 86 0 4	B:Horizontal					 - -					
35		5 10		134/2.5				- - - - -						
			0.00	-				-	+ "					

CLIENT:	Syı	nergy				JOB NO.: 04-803S-4	
PROJEC	Γ:					DATE: 6/11/04	DRILL HOLE LOG
	Te	ntative	Tract 60258			LOGGED BY: MAS	
DRILLING	COMP	A BOY.	i-Valley/Ry			DRILLED: 2/16-2/19/2004	·
DRILLING	METH	20	icket-Auger (110'	Ria)	HOLE DIA: 24"	
HAMMER	TYPE		lescoping Ke			AVERAGE DROP (in.): 12"	BORING NO. B-16
DRIVING	WEIGH	ITS:			524 lba: 04 444-4407 lba	ELEVATION: 1612'	<u> </u>
0-28	5=5952	IDS; 28-		-64=2	531 lbs; 84-114=1407 lbs		
m	<u>.</u> .	,	ATTITUDES, DRY DENSITY (pcf)/ MOISTURE CONTENT (%)	g Z	Description		
E 없는) / S	높	JDES SITY (SYMBOL	·		
DEPTH (feet) SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, Y DENSITY (('URE CONTE	S	Solis: description; consister	ncy/density; moisture; color; other	Remarks
S S	В	0	A' DRY ISTU	nscs	Bedrock: color, lithology, ha	ardness; moisture; other	
		25::01	W Q				
		.000]			
40							T
	6 11	008	130/2.6				Ţ
		089	_				T
					@ 42.5' light brown silt	ty clay/clayey silt; stiff; dan	пр
			B:Horizontal				Ţ
45		0000					Ţ
		98 O					
		0000	B:Horizontal				T
			_				Ť
		0	XB:N45E 4SE				Ť
50			_				†
	12		121/3.7				
			_				T
			-				T
				}	@ 53' Pale yellowish-br	own interbedded silty sand	lstone and sandy
55			_		siltstone; stiff; damp	•	Ť
							Ŧ
			_		•		Ť
			B:Horizontal				-
			-				Ť
60			-				-
	5 16		110/18.5				
			-	{			Ť
			-				Ť
			B:Horizontal				T
65							<u> </u>
		000	B:Horizontal		@ 65' pale yellowish-br	own sandstone; very dense	; damp
		9 08080	-				†
		00000	-				Ť
		000 800	-				Ť
70		J. 7000	-				T
	16		125/3.6				†
		0.00.00	=				Ť
		00000	-	ļ			†
		0:0000	-				†
75_		.0: ::::	-				T
I				- 1			

CLIEN'		Syl	nergy				JOB NO.: 04-803S-4	DRILL HOL	FLOG
PROJE	-C I						6/11/04	DIVILL HOL	L LOG
DRILLI	NC	Te	N NIV.	Tract 60258			MAS MAS	_]1
DRILLI			00:	i-Valley/Ry			2/16-2/19/2004		
HAMM			BI	ucket-Auger (Rig)	24		i i
DRIVIN			16	elescoping Ke	lly		IZ IZ	BORING NO	B-16
0-	-28	=5952	lbs; 28	55=392 <u>1 lbs;</u> 55	84=2	531 lbs; 84-114=1407 lbs	1612'		
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, DRY DENSITY (pcf)/ MOISTURE CONTENT (%)	USCS SYMBOL	Description Soils: description; consiste Bedrock: color, lithology; h	ncy/density; moisture; color; other ardness; moisture; other		Remarks
80		14		B:Horizontal		@ 83' same; with finely	v laminated cross bedding	- -	
90		25		117/10.8		Total depth 90' No caving Ravelling: 4-40' No groundwater			
105				-				- - - - - - - - -	

CLIENT:		nergy				JOB NO.: DATE:	04-803S-4	DRILL HOL	FLOG
PROJECT						LOGGED B	6/11/04	DIVILL ITO	
DRILLING		DA BINZ.	Tract 60258			DRILLED:	MAS		
DRILLING		I I	i Valley/Mario			HOLE DIA:	4/22-4/23/04		
HAMMER		BU	ucket-Auger (*	114'	6×6)	AVERAGE	24"		
DRIVING		!€	elescoping Ke	lly Ba	ar	ELEVATION	14	BORING NO.	B-17
			57=3921 lbs; 57-	86=2	531 lbs; 86-114=1407 lbs	ELEVATION	1642'		_
DEPTH (feet) SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUBES, DRY DENSITY (p:c)/, MOISTURE CONTENT (%)	USCS SYMBOL	Description Soils: description; consister Bedrock: color, lithology; ha				Remarks
10	3 3		107/7.4 		SOIL; (0-10') @ 0' Pale reddish brow moderately dense; pin QUARTERNARY TE @ 11' pale reddish brow dense, dry to damp; cr @ 15' same; interbedde sandstone dense dry to @ 17' same; pebbly	RRACE wn to yel oss beds	s, roots and rootle g Qt (10-20') lowish-brown clay not well defined	ts	
20 25 30 30 35	3 3 3 4 6 8 16		Apx. B: Horizontal		@ 17' same; pebbly BEDROCK; TQs (20- @ 21' light-brown silt s @ 25' pale reddish-brown @ 28 same; light brown @ 30' pale light brown damp	wn claye n to tan si	y sandstone; dense lty sandstone; den	e; damp	@ 30-35' bulk sample

CLIEN		Syı	nergy				JOB NO.: 04-803S-4	DRILL HOL	FLOG
PROJE	EG I						DATE: 6/11/04 LOGGED BY: NAC	DIVILL HOL	
DRILLI	NG	Tel	3 A A 13 /-	Tract 60258			MAS		1
DRILLI			11	i Valley/Mario			4/22-4/23/04		
HAMMI			Br	ucket-Auger (24"		İ
DRIVIN			16	elescoping Ke	lly Ba	ar	FLEWFION	BORING NO.	B-17
				57=3921 lbs; 57-	86=2	531 lbs; 86-114=1407 lbs	1642'		
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, DRY DENSITY (pcf)/ MOISTURE CONTENT (%)	USCS SYMBOL	Description Soils: description; consister Bedrock: color, lithology; ha	ncy/density; moisture; color; other ardness; moisture; other		Remarks
40		6 4 16		B:Horizontal B:Horizontal 124/7 12.9			to tan, silty sandstone; den	-	@ 10:55 AM grab bucket til 11:40 AM
45	-					gravel; very dense; dar @ 49' cobbles		-	
50		7 27		128/4.8		0 20 0000000		- - - -	@ 50' Rock in tip
55			0.00	- -		@ 56' pale reddish-brov	vn silty clayey sandstone; v	ery dense; damp -	@ 59' Small bulk
60		5 16 28		B:Horizontal 126/ 12.2 		@ 60' light yellow to ta:	n clayey sandstone; hard; d	amp - - - -	
65				-				- - - -	
70		8 32	000	122/9.8 				- · - - -	@ 70' Rock
75			000					_	L #

CLIENT:						JOB NO.: 04 0000 4	T	
PROJEC	Syl	nergy				04-8035-4	DRILL HOL	FLOG
PROJEC	ι.					6/11/04	DIVILL IIOL	LLUU
	Te	ntative	Tract 60258			LOGGED BY: MAS		
DRILLING		11	i Valley/Mario	1		DRILLED: 4/22-4/23/04		
DRILLING		Dι	ucket-Auger (114'	6×6)	HOLE DIA: 24"		
HAMMER		⊢ ⊢ ∈	elescoping Ke	lly Ba	ar	AVERAGE DROP (in.): 12"	BORING NO.	B-17
DRIVING	WEIGI 1=5952	HTS: Pilhs: 30-	.57=3921 lbs: 57	-86=2	531 lbs; 86-114=1407 lbs	ELEVATION: 1642'	_	
	000.	100,00		Γ.				
m	, 	0	ATTITUDES, DRY DENSITY (pcf)/ MOISTURE CONTENT (%)	SYMBOL	Description			
H & E	2/(HC	DES SITY (Σ×				D
DEPTH (feet)	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, Y DENSITY (E URE CONTE	တ္သ	Solis: description; consiste	ncy/density; moisture; color; other		Remarks
- As	ᇳ	9	A DRY ISTU	nscs	Bedrock: color, lithology; h	ardness; moisture; other		Į
			MO M					
			-				+	-
			B:Horizontal		@ 77' pale reddish bro	wn silty clayey sandstone;	moderately dense;	-
			_		damp		-	-
			-				+	-
80							-	-
	10 24		125/10.6				+	-
	24		_				_	-
							_	-
			_				+	-
85					m , 1 1 , 1 or			-
]	_		Total depth 85' No groundwater		_	- }
			_		No caving			-
		1	-		The caving			~
			_					_
90							<u>, </u>	_
			_					_
							_	_
								_
95_								_
		}						
								_
							<u> </u>	
] [
100		i [Tis			
								Ī
			_					-
							T	_
							1	=
105			- . :					_
135							1	-
			 i				†	_
			-					-
			-				†	-
440			-				+	-
110							-	- ļ
\vdash			_				+	-
							+	- [
		, ,						

CLIEN	T:	Sve	orav			JOB NO.: 04-803S-4	T_				
PROJ		<u>oyr</u>	ergy			DATE: 6/11/04	D	RIL	L	OF	LE LOG
DDILL	INIC (Ter	KIV.	-	60258	LOGGED BY: KPC					
11		METHO	<u>V</u>	-	Well Drilling 1	HOLE DIA: 5 1/4"	-				
HAMM			K	-	-Wash	AVERAGE DROP (in.): 30"	B	DRIN	G N	o	RW-1
DRIVII	VG W	/EIGHT	~.	40 lbs	Hammer S	ELEVATION 1290'	1				
	Ⅱ	<u> </u>									RY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRI	PTION	·	Moisture Content (%)	Dry Density (pcf)	% fines	Other Tests
0					ARTIFICIAL FILL; af (0-8')						
5—		4 3 7		SC	@ 5' Clayey SAND; loose; moist; med QUATERNARY ALLUVIUM; Qal (8		bbles	- - - 10.5	120		
-					Quitaliani in in in in in in in in in in in in i	-33 j					
10		6 5 6		SM	@ 10' Silty SAND; loose to medium d	ense; moist; light gray	}			13	
- 15 — -		12 7 5			@ 15' -with gravel; medium dense; yel	lowish to grayish brown		-			
20 —	7	9 12 17					}	-		14	
-											
25		13 15 15					 - - -	8.9	125		
30 —		10 8 5		-	@ 30' -wet; yellowish brown			-			
35 — - -		40 42 60			BEDROCK; TQs (35-50') @ 35' Poorly graded SANDSTONE wi grayish brown	th silt; very dense; wet; yellowi	sh to	-			

CLIEN		Syr	ergy			JOB NO.: 04-803S-4 DATE: 6/11/04	D	RIL	LI	10	LE LOG
DRILL	ING	COMPA METHO	NY: V	alley	t 60258 Well Drilling v-Wash	DRILLED: 4/7/04 HOLE DIA: 5 1/4"	R	ORIN	G N	<u> </u>	DW 1
HAMN DRIVII		TYPE: VEIGHT	_	afety 40 lb:	Hammer s	AVERAGE DROP (in.): 30" ELEVATION 1290'	٠,		0 14	.	RW-1
	YPE	.9	l								ORY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRI	PTION		Moisture Content (%)	Dry Density (pcf)	% fines	Other Tests
40		60/4* 75/3*			@ 40' -light gray to yellowish brown @ 45' -light gray to grayish brown			- - - -	112		
-								- - -			
50 — - - -		75/3"	7		@ 50' Silty SANDSTONE; very dense Total Depth 50' Ground Water @ 27'	; wet; light gray to grayish browr	1	- - -			
55 - -	-										
60 —							-	-			
65		·					-	-			
70 —								_			
75 —							-	-			

CLIEN	T: c	vnorav			JOB NO.: 04-803S-4					
PROJE		ynergy			DATE: 6/11/04	DF	RIL	Lŀ	10	LE LOG
	٦	entative	Tract	60258	LOGGED BY: KPC					
DRILL	ING COI			Well Drilling	DRILLED: 4/8/04					
DRILL	ING ME	u		/-Wash	HOLE DIA: 5 1/4"	DO	DIN	~ N	_	D) 1/ 0
HAMM	IER TYP	~		Hammer	AVERAGE DROP (in.): 30"	BO	KIN	GN	O	RW-2
DRIVI	NG WEI	SHTS:	140 lb:	S	ELEVATION 1300'					
	김 ,		72		<u> </u>					PRY TESTS
DEPTH (feet)	SAMPLE TYPE	GRAPHIC	USCS SYMBOL	DESCR	PTION		Moisture Content (%)	Dry Density (pcf)	% fines	Other Tests
-0-				ARTIFICIAL FILL; af (0-9')						
5	1 2 2 2		SC	@ 3' Clayey SAND with gravel grayish brown	very dense; dry; yellowish to				19	
-	7 1 2 4			@ 6' -damp		}				
10 —	1 3	5 4519163, 2 paretr 409646 proter a vect	SP- SM			to			7	
-	1 1 2	o intrei. s paner s pointi rraer s paner		@ 12' -medium dense; moist; ye	llowish brown	} } }	6.0	121		
15 — -		D 1211111		@ 15' -yellowish to grayish brow	v n	- - -				
20 –		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SP- SC	@ 18' Poorly graded SAND with gray to light brown	clay; very dense; moist; ligh	t			6	
-	40	12"		@ 21' -light yellowish to grayish	brown	ļ -				
25 –	1 2 2	ファンファンファンファンファンファンファンファンファンファンファンファンファンフ		@ 24' -medium dense; yellowish	to medium brown	-	4.6	144		
-		0 7 7 7 7 9 9	SP	@ 27' Poorly graded SAND; den	se; wet; light grayish brown				3	
30 -	1	0		@ 30' -very dense		-		}		
35 -		0		@ 33' -medium dense		-			:	
	50	0'3"		@ 36' -very dense; yellowish bro	wn .	-	7.0	125		

CLIEN		Syr	nergy			JOB NO.: 04-803S-4		יום	1 !	10	LELOC
PROJ	ECT:	-				DATE: 6/11/04	וט	KIL		10	LE LOG
		Ter	tative '	<u>Tract</u>	t 60258	LOGGED BY: KPC					
11		COMPA	NY: V		Well Drilling	DRILLED: 4/8/04					
!		METHO			y-Wash	HOLE DIA: 5 1/4"		יאוחר	C 11	^	5)
НАММ	IER	TYPE:			/ Hammer	AVERAGE DROP (in.): 30"	B	JKIN	GN	U. ₋	RW-2
DRIVI	NG V	VEIGHT		40 lb:		ELEVATION 1300'					
	Щ								LABC	RATO	ORY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	D	ESCRIPTION		Moisture Content (%)	Dry Density (pcf)	% fines	Other Tests
40 -		14 50/5"			@ 39' -light yellowish to gra @ 42' -medium dense	ayish brown		-		2	
45		5 9 12 13 23 25			@ 45' -dense		<u>.</u>	- - -			
<u>-</u>		50/5"			@ 48' -very dense			•		5	
50 —					Total Depth 48' Ground Water @ 27'			- - -			
55 -								· -			
60 —								· - ·			
65 -							 - - - - - -	-			
70 -							 - - - - -	-			
75 -								-			

CLIEN	T:	Svn	ergy			JOB NO.:	04-803S-4					
PROJE	CT:		.0,9)			DATE:	6/11/04	D	RIL	Lŀ	10	LE LOG
		Ten	itative :	Tract	60258	LOGGED B	Y: KPC					
lf		COMPA		alley	Well Drilling	DRILLED:	4/7,8/04					
		METHO			-Wash	HOLE DIA:	J 1/T	⊢в	ORIN	G N	۵.	RW-3
HAMM		TYPE: VEIGHT			Hammer	ELEVATION	DROP (in.): 30"	⊣ ¯`	• • • • • • • • • • • • • • • • • • • •	•	· -	1777-3
DRIVII		VEIGHT	3. 1.	40 lbs	S	ELEVATION	1310'			LARO	DATO	DRY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRI	PTION			Moisture Content (%)	Density (pcf)		Other Tests
5		4 7 711 5 9 10 1 2 3	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP- SM	@ 5' Poorly graded SAND with damp; grayish to medium brown @ 10' -no recovery @ 12.5' -very loose; moist @ 13.5' Lean CLAY; soft; moist; n QUATERNARY ALLUVIUM; G @ 15' Poorly graded SAND with yellowish brown	nedium to 2al (14-3)	o dark brown 0.5')		15.3	100	5	
20 -		24 29 14 14	23.01.01 27.21.11 27.21.11 27.21.11 27.21.11	SM	@ 20' Silty SAND with gravel; dbrown @ 25' -very dense; small cobbles	ense; m oi	st; brown to yello	owish				
35 ~		43		SP	@ 30' Poorly graded SAND; very light brown @ 30.5 -refusal Total Depth 30.5' Ground Water @ 6'	dense; n	noist; light gray t	0				

CLIEN		Ne	whall L	and		JOB NO.: 03-1571-4		DII		10	LELOC
PROJ	ECT:				t 53425, River Park	DATE: 4/4/03	JU	KIL	Lſ	10	LE LOG
DRILL	ING	Citv	of Sa	<u>nta C</u>	larita, California	DRILLED: A477/02					
DRILL			<u></u>		Well Drilling	4/1//02	_				
HAMM			R		Wash .	HOLE DIA: (5½" O.D.) AVERAGE DROP (in.): 30"	B	ORIN	G N	Ο.	RW-10
ll .		VEIGHT		ownt 40 lb:		ELEVATION 1264	-				
\vdash	ш		1	T	s.	1204		T ==	LABC	RATO	DRY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRI	PTION		Moisture Content (%)	Dry Density (pcf)		Other Tests
40	4	14 12 14						_			
-	4	16 31 30			@ 42' - very dense			-			
45 —	4	22 30 34			@ 45' - very dense; (with no grave	·I)		_ - -			
-	4	12 16 14			@ 48' - medium-dense; (with no g	ravel)		-			
50 —		10			@ 51' - (with no gravel)			-		37	
_	4	10 14 18						-			
-					Total Depth 51 ft. (Elev. 1213) Groundwater @ 34 ft. (Caved) (El	ev. 1230)		-			
55 —								 -			
_								-			
-								-			
60 -								-			
_							-	-			
-								-			
65 —								-			
-								-			
-	1							-			
70-								+			
_	$\left \cdot \right $										
-								-			
75 —								-			
_								-			

CLIE		Ne	whall l	Land		JOB NO.: 03-1571-4	ח	DII		10	LE LOC
PROJ	ECT:	Te			et 53425, River Park	DATE: 4/4/03	וט		Lſ	70	LE LOG
DRILL	ING	COMP	A NIV.		Clarita, California Well Drilling	DRILLED: 4/17/02	1				II.
DRILL	ING	METH	OD:		y Wash	HOLE DIA: (5½" O.D.)		> = 1 × 1		_	
!		TYPE:	[Down		AVERAGE DROP (in.): 30"	B	JRIN	GN	O. _	RW-10
DRIVI		VEIGH	TS: ,	140 lb	os.	ELEVATION 1264	<u> </u>				
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC	USCS SYMBOL	DESCRIF	PTION		Moisture Content (%)	Dry Density (pcf)		ORY TESTS Other Tests
0					QUATERNARY ALLUVIUM; Q	al, (0-51 ft.)					
5-		6 6 9 12 12		SM	@ 3' Silty SAND; loose; moist; m	edium-brown	-	7.2	117	23	
10		7 11 15			@ 9' - medium-dense; orangish-br	own		5.8	122		
-		14 18 19			@ 12' - medium-dense; orangish-br	rown	-	6.4	123	17	
15		7 8 8			@ 15' - no recovery		-	-			
- - 20 —	4	8 9 10		SC	@ 18' Clayey SAND; medium-den	se; moist; orangish-brown	-			40	LL= 28 Pl= 13
-	4	8 9 12	22006	SM	@ 21' Silty SAND; medium-dense	; moist; orangish-brown	-				
25 —	4	7 8 12					-			33	
_	4	6 9 15					-				
30 —		9 10 10									
35 —	4	5 19 19			@ 33' Silty, clayey SAND; dense; 1 brown	noist; orangish- to grayish-	. [
-	4	12 16 18			@ 36' Silty SAND with gravel; der grayish-brown	ase; moist; orangish- to	-			14	

CLIENT:	Syr	nergy			JOB NO.: 04-803S-4					
PROJEC	T:	icigy			DATE: 6/11/04	D	RIL	L I	1O	LE LOG
DRILLING	Ter	ntative 7			LOGGED BY: KPC DRILLED: 4/00/04					
DRILLING		V6	-	Well Drilling	HOLE DIA: 8" O.D.					
HÄMMEF		П	ollow utom	/ Stem Auger	AVERAGE DROP (in.): 30	BO	ORIN	G N	O. ₋	HS-1
DRIVING	WEIGHT	-	10 lbs		ELEVATION 1375'					
П	<u>.</u>									DRY TESTS
DEPTH (feet)	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRIF	PTION		Moisture Content (%)	Dry Density (pcf)	% fines	Other Tests
0 _				QUATERNARY ALLUVIUM; Qal ()-34')		_			
5-	50	640000 110 64000 110 64000 110 64000 110 64000 110 64000 110		@ 3' -no recovery; boulders			- - -			
-	21 31 40	00000000000000000000000000000000000000			ery dense; dry; light gray to ligh	t	<u>-</u> - -		11	
10 -	12 15 13	9.490 8.449 0.000 64.63 0.000 64.63 0.000 64.63		@ 9' -medium dense			 -			
7	12 17 14		SM	@ 12' Silty SAND; dense; dry; light gr	ay to light brown		- -		25	
15 —	16 31 32			@ 15' Poorly graded SAND with silt; c light grayish brown	lense; slightly damp; yellowish t	ю [1.3 - -	119	6	
20 -	18 26 26		SM	@ 20' Silty SAND; very dense; damp;	yellowish brown		- - -		13	
25 —	25 46 33		SP- SM	@ 25' Poorly graded SAND with silt; v	rery dense; damp; yellowish bro	wn	- -		9	
30 -	25 40/3"	213 61 13 213 61 13 213 61 13	SM	@ 30' Silty SAND with gravel; very de	nse; damp; yellowish brown	-	- - -		13	
			}	\@ 34' -refusal		}				
35 —				Total Depth 34' No Ground Water			-			

CLIEN	IT:	Syn	ergy			JOB NO.: 04-803S-4			_	
PROJ	ECT:	Oyn	<u>cigy</u>			DATE: 6/11/04	DRIL	L	HC	LE LOG
		Ten	tative	Tract	60258	LOGGED BY: KPC				
DRILL		OMPA	NY: V		Well Drilling	DRILLED: 4/30/04				
DRILL			D: <u> </u>	lollow	/ Stem Auger	HOLE DIA: 8" O.D.	BORIN	G N	n	HS-2
HAMM				utom		AVERAGE DROP (in.): 30 ELEVATION 444.01	Doran	-	·.	110-2
Bictori		_10111	1 I	40 lb:	<u>s</u>	1410'	<u> </u>	LADO	ND A T	ORY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRIF	PTION	Moisture Content (%)	Dry Density (pcf)		Other Tests
5-		11 17 19		SM	QUATERNARY ALLUVIUM; Qal (0 @ 3' Silty SAND; dense; dry; light ye		-		14	Refusal @ 3'
-		10 17 24			@ 6' -medium dense; damp		6.3	124	15	Refusal @ 7'
10		20 23 21			@ 9' -dense; medium brown		- - -		28	
_		7 17 25					-		12	
15		9/4"					-		16	Refusal @ 16'
20		23 50			@ 20' -very dense; yellowish brown		3.0	122	26	
25 - -	/ :	16 25 25/2*			@ 25' -light yellowish brown				17	,
30 —		30/4"			@ 30' -damp to moist; yellowish to ora	ngish brown	-		22	Refusal @ 32'
35 —					Total Depth 32' No Ground Water		-			
_							-			

CLIEN		Nev	whall L	and	·	JOB NO.: 03-1571-4		DII	1 1	10	LELOC
PROJE	CT:	Ten	ntative	Tract	53425, River Park	DATE: 4/4/03		KIL.	Lſ	10	LE LOG
DRILLI	NG C	City COMPA	A 137.		larita, California Well Drilling	DGG DRILLED: 4/12/02	4				
DRILLI			DD:	lollow	/-Stem-Auger	HOLE DIA: 8"O D 41/4 I D					HS-2
DRIVIN			· C ·	ownt 40 lb		ELEVATION 1272	-		•		110-2
	끮		Ī		5,	1212			LABC	RATO	DRY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRI	PTION		Moisture Content (%)	Dry Density (pcf)	% fines	Other Tests
0 -					QUATERNARY ALLUVIUM; Q	al, (0-30 ft.)		-			
-		10 9 10		SM	@ 2' Silty SAND; medium-dense	; damp; medium-brown		- 1.5 -	100		
5—		8 10 13			@ 5' - medium to orangish-brown			- 4 .7	115	12	Consal
		15 21 23			@ 8' - moist; medium to orangish-	brown			122		
10 —		11 11 15		SP- SM	@ 11' Poorly graded SAND with orangish-brown	silt; medium-dense; moist;		- 2.4 -	127		
15	4	9 10 10	100 C 100 C	SM	@ 15' Silty SAND; medium-dense	e; moist; orangish-brown		- - - -			
20	4	9 10 12						- - - -			
25 -	4	10 10 11			@ 25' - medium to orangish-brown			- - -		33	:
30 -	1	12 14 18			@ 30' - dense		- - -				
-					Total Depth 30 Ft. (Elev. 1242) No Groundwater		-				
35								-			

CLIEN		:	whall L			JOB NO.: 03-1571-4 DATE: 44400	DI	RIL	L F		LE LOG		
		Te			t 53425, River Park Clarita, California	LOGGED BY: DGG							
		COMP	ANY: \		Well Drilling	DRILLED: 4/12/02	1				1		
1		METHO	DD:	Hollov	v-Stem-Auger	HOLE DIA: 8"O.D., 41/4 I.D.	BC	ORIN	G N	0	HS-3		
11		TYPE: VEIGH	TC.	Downl		30"							
E CO	1 1	VEICH	T 1	40 lb	S	1284	<u> </u>		LARC	RATO	DRY TESTS		
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRIF	DESCRIPTION							
		7 10		SM		QUATERNARY ALLUVIUM; Qal, (0-55 ft.) 3' Silty SAND; medium-dense; moist; medium-brown							
5		16			@ 6' - light gray to orangish-brow		- - -	- 1.5	124		 		
-	-	19 28 22 21		QD.	@ 9' Poorly graded SAND with s			2.1	123	8			
10 -		11 16 21	1300 6 1 5 1300 6 6 1 1400 6 6 1 1406 6 6 1 1306 6 6 1	SM	orangish-brown		-	-	!				
-		15 15 17			@ 12' Silty SAND; medium-dense			1.9	120	14			
15~		11 13 18			@ 15' Poorly graded SAND with orangish-brown	silt and gravel; dense; mois	st;			12			
20		10 15 26		SM	@ 20' Silty SAND; dense; moist; p	oale orangish-brown		- -					
25 — -	4	11 12 12			@ 25' - medium-dense		- - - - - - - - - - - - - - - - - - -	-					
30 -		15 13 15	31 12 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SP- SM	@ 30' Poorly graded SAND with s orangish-brown		-						
35 — - -		12 27 25		SM	@ 35' Silty SAND; dense; moist; p		_						

CLIEN	T:	Nev	whall L	and		JOB NO.: 03-1571-4	
PROJE	CT:				t 53425, River Park	DATE: 4/4/03	DRILL HOLE LOG
DRILLI	NG (Citv	of Sa	nta C	larita, California	DGG DRILLED: 4/42/02	_
DRILLI			V V		Well Drilling	HOLE DIA: 8"O D 41/ LD	_
HAMM				ownt	v-Stem-Auger	AVERAGE DROP (in.): 30"	BORING NO. HS-3
DRIVIN	IG V	VEIGHT		40 lb:		ELEVATION 1284	
	PE			30L			LABORATORY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRI	PTION	Moisture Content (%) Dry Dry Lests W fines
40		7 12 12 12			@ 40' - medium-dense		
45	7	8			@ 45' - medium-dense; orangish-b	rown	
	4	10			A 471 1 1 1 111 (471 FON		
					@ 47' - hard drilling (47'-50')		
50	4	10 9 8		SP- SM	@ 50' Poorly graded SAND with orangish-brown	silt; medium-dense; moist;	
55		7			1		
		7 12 13			Total Depth 55 Ft. (Elev. 1229) No Groundwater		
60 -							
]				
						•	
-							
65 —							
				,			
∦ -							
70 —							
75 —							
1						•	

CLIEN	IT:	Ne	whall L	and		ЈОВ NO.: 03-1571-4					15100	
PROJ	ECT	: Te	ntative	Trac	t 53425, River Park	DATE: 4/4/03	ט	RIL		10	LE LOG	
DRILL	ING	Cit	A KIV+		Clarita, California Well Drilling	DGG DRILLED: 4/12/02						
DRILL	ING	METH)D.		v-Stem-Auger	HOLE DIA: 8"O.D., 41/4 I.D.	D/) DIN	C N	^	110.4	
		TYPE: NEIGH	TO.	Downl		AVERAGE DROP (in.): 30"	D.	ORIN	GN	O. ₋	HS-4	
L CONTRACTOR OF THE PARTY OF TH	T-		1	<u>لد ا</u>	s. 	1298	<u> </u>		LABC	PRATO	ORY TESTS	
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRIF	PTION		Moisture Content (%)	Dry Density (pcf)		Other Tests	
0 -					QUATERNARY ALLUVIUM; Q	al, (0-30 ft.)		-				
-		9 10 16		SM	@ 2' Silty SAND; medium-dense brown	; damp; medium to orangisl	n-	- 1.0 -	100			
5		10 12 17			@ 5' - pale orangish-brown			- 2.8 -	102	19	Consol	
- 10		12 18 21			@ 8' - pale orangish-brown			2.3	117			
-		32 35 38			@ 11' - dense; pale orangish-brown	ı		1.6	127			
15	4	13 18 15			@ 15' - dense; pale orangish-brown	ı		-		35		
20	4	16 16 20	3144 64.4 314 64.4 314 64 6 114 6 64 114 6 114 6		@ 20' Poorly graded SAND with s pale orangish-brown	silt and gravel; dense; damp); -			7		
25 —	4	14 19 17	311 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SM	@ 25' Silty SAND; dense; damp; o	25' Silty SAND; dense; damp; orangish-brown						
30	4	23 28 25		GP- GM	@ 30' Poorly graded GRAVEL wit damp; grayish- to orangish-brown	_						
35					Total Depth 30 feet (Elev. 1268) No Groundwater							

CLIEN		Nev	whall L	and		JOB NO.: 03-1571-4	DDI		<u></u>	IELOC	
PROJ	ECT:	Ter			: 53425, River Park	DATE: 4/4/03 LOGGED BY: DOG	ואט			LE LOG	
DRILL	ING	City	KIV.		larita, California Well Drilling	DGG DRILLED: 4/12/02	-				
II .		METHO	Δ·		y-Stem-Auger	HOLE DIA: 8"O D 41/ 1 D					
HAMM		TYPE: VEIGHT	· C ·	<u>Oownh</u>		AVERAGE DROP (in.): 30"		110 11	٠.		
			<u> </u>	40 lbs	S	1311 1311		LAB	ORAT	ORY TESTS	
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRIF		Moisture		$\overline{}$	Other Tests	
0 -					QUATERNARY ALLUVIUM; Q	al, (0-50 ft.)	-		}		
5-		14 24 26		SM	@ 3' Silty SAND; medium-dense	; moist; medium-brown	2.6	126			
-		19 20 24			@ 6' - orangish- to medium-brown		6.3	109	19	Consol	
10-		9 14 18			@ 9' - orangish- to medium-brown	ı	1.9	115			
-		12 24 35			@ 12' - dense; orangish- to mediun	n-brown	2.5	124			
15	4	15 18 20			@ 15' - dense; light gray to pale or:	angish-brown	-				
20		11 15 15			@ 20' - light gray to pale orangish-	brown	-				
25 — -	4	13 16 26			@ 25' - with gravel; dense; light gr	25^{\prime} - with gravel; dense; light gray to pale orangish-brown					
30		13 17 19			@ 30' - dense; light gray to pale ora	angish-brown			41		
35 —		11 10 11			@ 35' - orangish-brown						
					@ 37' - hard drilling		-				

CLIEN		Ne	whall L	and		JOB NO.: 03-1571-4	DI			10	15100
PROJ	ECT				53/125 Piyor Park	DATE: 4/4/03	וט	XIL	LI	10	LE LOG
		City	of Sa	nta C	larita, California	LOGGED BY: DGG					
			v	alley	VVCII DIMINIG	DRILLED: 4/12/02					
		METHO)D: H	ollow	-Stem-Auger	HOLE DIA: 8"O.D., 4¼ 1.D. AVERAGE DROP (in.): OO!! BORING NO. HS-5					
		TYPE: VEIGHT		ownh		AVERAGE DROP (in.): 30"			•	٠	110-3
DKIVI	1 1	VEIGH	1.	40 lbs	S. [1311					
	비	9	U	l l l			}				ORY TESTS
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	USCS SYMBOL	DESCRIP	TION		Moisture Content (%)	Dry Density (pcf)	% fines	Other Tests
40		10 10 15			@ 40' - orangish-brown		-				
45 - -		13 17 20			@ 45' Poorly graded SAND with s brown	ilt; dense; damp; orangish-					
50		25 26 30	iáitei:		@ 50' - with gravel; very dense						
-	4	30			o do widi graver, very dense		f				
- - 55 —					Total Depth 50 Ft. (Elev. 1261) No Groundwater		- - -				
-	$\left\{ \ \right\}$						}				
-	1						}				
-	1						t				
-							f				"
60 —	1										1
_			, ;				-	i			
_							. }				1
65 —	}						-				,
-	1		}				+				l li
-							-				ļ
-	1						-				
-		•					Ī				
70 —											"
_							-				[
_							}				
-							-				
75 -		,					-				1
-				ļ			F				"
-				Ì			+				u'

							T. i.e.i.e.i			
CLIEN		Syı	nergy				JOB NO.:	04-803S-4	DRILL HOL	FIOG
PROJ	ECT	:					DATE:	_6/11/04	DIVILL HOL	L LOG
II ————		Te	ntative	Tract 60258			LOGGED B	Y: VCG		
DRILL			<u> </u>	uality Concre	te Co	nstruction Company	DRILLED:	5/5,6/04		i
[]		METH	Ha	and Excavate	ed	···	HOLE DIA:	30"		
MAH			N.	.A.			AVERAGE I	N.A.	BORING NO.	HB-1
DRIVI	NG V	WEIGH	ITS:	N.A	١.		ELEVATION	1430'		
	П			(%)						
_	JE	6	ပ	S, (pct)	SYMBOL	Description				
DEPTH (feet)	SAMPLE TYPE	BLOWS / 6"	GRAPHIC LOG	ATTITUDES, Y DENSITY ((SYN	 Soils: description; consister	ncv/density:	moisture: color: other		Remarks
 	AMP	0	1 AS	ATTI'	nscs					
	S	ш		ATTITUDES, DRY DENSITY (pd)/ MOISTURE CONTENT (%)	Sn	Bedrock: color, lithology; ha	iraness; mo	isture; other		1
\vdash	H			2	-	SLOPEWASH; Qsw (0-	10')			
<u> </u>	1			-		, & , (/		-	† '
ļ	1		ā:	-					-	+
 				114/1.7		@ 3' Silty SAND with gr	avel and c	obbles; medium dense	e to dense; moist; tan to	+
-	1		- 5-	-		light brown; voids			-	† .
. 5	1		Psw.		1				-	†
			0:	115/2.2					-	†
	11			_					-	†
ļ	11		0.6	-					-	<u> </u>
10			9 .0	105/8.8	SM				-	@ 9' Consol
10	1				1	BEDROCK; TQs (10-16 @ 10' Silty SANDSTONI) .		-	+
	1					@ 10' Silty SANDSTONI	E; dense to	very dense; moist; li	ght yellowish brown to -	†
	F		το.	118/8.9		tau			-	<u> </u>
	11								-	†
15	11		1	_					-	+
	1		7			V			-	<u> </u>
				106/8.6						
						Total Depth 16' No Ground Water			~	T
				_		No Caving			_	
20						110 Caring			_	
			}	<u> </u>					_	
			[-					_	1
<u> </u>	1			_					-	
 				_					_	_
25									-	<u> </u>
 	1		}	-					-	1
 	$\ \ $			-					-	_
 				_					-	_
ļ				_					-	-
30	$\ \ $								-	+
	$\ \ $								-	 -
	$\ \ $								-	+
	$\ \ $			-					-	-
-				_						 -
35	1		}						-	-
			}						-	+ 1
	1			_					_	1- 1

KEY TO SYMBOLS Symbol Description UNITED SOIL CLASSIFICATION SYMBOLS Poorly graded sand with silt Silty sand Clayey sand Blank Poorly graded sand with clay Poorly graded sand Lean clay GROUND WATER DATA GROUND WATER AFTER DRILLING SAMPLE TYPE

No Recovery

STANDARD PENETRATION TEST
Split barrel sampler in
accordance with
ASTM D-1558 Standard Test
Method

CALIFORNIA DRIVE SAMPLE 2.42" I.D. sampler

Notes:

- 1. These logs are subject to the limitations, conclusions, and recommendations in this report.
- Results of tests conducted on samples recovered are reported on the logs.

KEY TO SYMBOLS

Symbol Description

UNITED SOIL CLASSIFICATION SYMBOLS

Silty sand

Poorly graded sand with silt

Poorly graded gravel with silt

Silty clayey sand

SAMPLE TYPE

CALIFORNIA DRIVE SAMPLE 2.42" I.D. sampler

Dutch cone test

No Recovery

Notes:

- 1. These logs are subject to the limitations, conclusions, and recommendations in this report.
- 2. Results of tests conducted on samples recovered are reported on the logs.

CPT INTERPRETATIONS

SOUNDING : CPT-33 PROJECT No.: 02-1571-4 PROJECT : RIVER PARK CONE/RIG: 471/GO-KP/R#4

DATE/TIME: 03-11-02 13:45 ************

PAGE 1 of 2

DEPTH	DEPTH	TIP RESISTANCE (tsf)	PRICTION	SOIL BEHAVIOR TYPE				Su	PHI
(m)	(ft)	(tsf)	RATIO (%)		No ph an ac ph	ings stem das dem sach dass	(%)	(tsf)	(Degrees)
50505050505050505050505050505050505050	98876544321110987765543321009876654322110998 111223334455566778889900111223334455566778889901111213344555667788899011111111111111111111111111111111	315085674728442526787715600401229651283100 9679644875586088474025408061889044371180231 23223432234999965555564743086555544371180231	1.052221763362417750226220351919894978959266628 1.11111111121111 1.122111111111111111	ORGANIC MATERIAL SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SANDY SILT tO CLAYEY SILT SANDY SILT tO CLAYEY SILT SANDY SILT tO CLAYEY SILT SANDY SILT tO CLAYEY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SAND TO SANDY SILT SAND TO SANDY SILT SAND TO SANDY SILT SAND TO SANDY SILT SAND TO SANDY SILT SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SANDY SILT TO CLAYEY SILT	00210552103905324877.6837337730408791100167	121122211234343222232243332241112211222	418 41 548 4 9 366418666 68392449 58	2.29 2.29 2.30 3.19 42.33 42.3	47.55.55.05.00.05.55.00.00.05.55.00.00.05.55.00.00

*

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 120 pcf assumed depth of water table = 34.0 ft n(60) = EQUIVALENT SPT VALUE (60% Energy) n1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

SOUNDING : CPT-33

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
(m) 6.300 6.450 6.600 6.750 6.900 7.050 7.200 7.350 7.500 7.800 7.950 8.250 8.250 8.400 8.550 8.700 8.850 9.150 9.150 9.150 9.150 9.150	(ft) 20.67 21.16 21.65 22.15 22.64 23.13 23.62 24.11 24.61 25.59 26.87 27.07 27.56 28.05 28.54 29.04 29.53 30.051 31.00 31.50	RESISTANCE (tsf) 46.89 54.58 83.81 93.48 87.02 75.87 66.54 75.42 79.22 130.63 134.08 66.11 34.65 31.06 58.19 277.52 134.52 77.71 107.27 60.25 126.73 74.40 44.06	4.05 3.76 2.53 2.48 2.21 2.62 3.05 2.03 2.59 1.34 1.07 2.86 5.02 5.02 3.44 1.17 1.43 2.03 2.07 4.25 1.36 3.40 1.88	CLAYEY SILT tO SILTY CLAY CLAYEY SILT tO SILTY CLAY SANDY SILT tO CLAYEY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT SAND TO SILTY SAND SAND TO SILTY SAND SANDY SILT TO CLAYEY SILT CLAY CLAYEY SILT TO SILTY CLAY SAND SAND TO SILTY SAND SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT CLAYEY SILT TO SILTY CLAY SAND SAND TO SILTY SAND SILTY SAND TO SANDY SILT CLAYEY SILT TO SILTY CLAY SAND TO SILTY SAND SANDY SILT TO CLAYEY SILT SANDY SILT TO CLAYEY SILT	23 27 34 31 29 30 27 25 32 33 34 26 35 31 29 56 34 26 36 30 31 29	21 24 29 27 25 26 22 21 26 27 27 21 27 24 23 43 26 20 27 22 22 23 22 23 22 23		(tsf) 2.7 3.1 5.5 5.0 3.8 5.2 4.3 1.7 3.3 3.4 4.3 2.8	
9.750 9.900 10.050 10.200 10.350 10.650 10.800 10.950 11.100 11.250 11.400 11.550 11.400 12.150 12.300 12.150 12.450 12.750 12.900	31.99 32.48 32.97 33.46 33.96 34.94 35.93 36.42 36.91 37.40 37.89 38.39 38.39 38.39 39.37 39.86 40.35 40.85 41.34 41.83 42.32	39.45 50.07 69.28 99.85 111.26 128.38 96.66 85.85 104.72 140.22 167.43 171.32 144.89 156.66 169.75 148.71 191.69 119.01 131.14 93.50 79.35 192.50	4.03 3.40 1.34 2.03 1.63 1.50 1.82 1.86 1.47 1.18 1.73 1.07 1.40 1.38 1.39 1.81 1.30 2.87 3.96	CLAYEY SILT tO SILTY CLAY CLAYEY SILT tO SILTY CLAY SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SANDY SILT TO CLAYEY SILT CLAYEY SILT TO SILTY CLAY	20 25 23 33 37 32 29 35 35 42 43 36 39 42 37 48 40 33 37 40 0	14 18 16 23 26 22 22 20 24 24 29 29 25 27 29 25 32 27 22 26 0	47 57 60 64 55 58 66 71 72 67 71 67 74 63		36.0 37.5 38.0 38.0 37.0 36.5 37.5 38.5 39.0 38.5 39.0 38.5 39.0 38.5 39.0

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 34.0 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

************* *

CPT INTERPRETATIONS

SOUNDING : CPT-34A PROJECT No.: 02-1571-4 k : RIVER PARK CONE/RIG: 471/GO-KP/R#4 PROJECT

DATE/TIME: 03-11-02 12:39

Ŕ. *

PAGE 1 of 3

depth	deptn	TIP	FRICTION	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	TIP RESISTANCE (tsf)	FRICTION RATIO (%)	***************************************	10. AT 40 TO 10	*****	(%)	(tsf)	(Degrees)
00000000000000000000000000000000000000	9887765544321110988776654333211009887665543222109998 11222334455566778889900111122334455566778889900111121111111111111111111111111111	57239997484510065342003306718129099826433007773 13822627689571969044787625678114483007773 124323466789961211787666144219881948866 111211102364421981948855848866 111211102364142198222222222222222222222222222222222	74263474134375943727859659272124645884189	SILTY SAND tO SANDY SILT SAND tO SILTY SAND SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SAND tO SILTY SAND SAND tO SILTY SAND SAND tO SILTY SAND SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SILTY SAND tO SANDY SILT SILTY SAND TO SANDY SILT SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND SAND SAND TO SILTY SAND	99127267912267070099724956363222721909824	05702057141172592188492711607444721877589	02838469155803811996025116730042872140564545456677777778887778888888899998899888		0055005505005005500550055005500000 775244555554444444444444444444444444444

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 34.0 ft
N(60) = RQUIVALENT SFT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SFT VALUE (60% Energy)
DI = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
SU = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

DEPTH	
6.300 20.67 287.00 1.57 SAND to SILTY SAND 72 64 94 44 6.450 21.16 156.85 1.80 SILTY SAND to SANDY SILT 52 46 76 41 6.600 21.65 168.20 1.61 SAND to SILTY SAND 42 37 78 42 6.750 22.15 220.63 1.47 SAND to SILTY SAND 55 48 86 43 6.900 22.64 275.84 1.33 SAND to SILTY SAND 55 48 86 43 7.050 23.13 321.54 1.83 SAND to SILTY SAND 80 68 96 44 7.200 23.62 245.10 1.22 SAND 49 41 88 43 7.350 24.11 320.48 1.56 SAND to SILTY SAND 80 67 95 44 7.500 24.61 283.51 .95 SAND 57 47 91 43 7.650 25.10 147.50 1.58 SAND to SILTY SAND 37 30 72 39 7.800 25.59 196.73 1.18 SAND to SILTY SAND 49 40 80 42 7.950 26.08 240.75 1.25 SAND 48 38 86 42 8.100 26.57 235.22 1.93 SAND to SILTY SAND 59 47 85 42 8.250 27.07 247.99 1.16 SAND 50 39 86 42 8.400 27.56 231.23 1.31 SAND to SILTY SAND 50 39 86 42 8.50 29.04 295.24 1.19 SAND 51 39 86 42 8.500 29.04 295.24 1.19 SAND 59 47 92 43 9.000 29.53 327.13 1.13 SAND 59 45 90 43 9.000 29.53 327.13 1.13 SAND 59 45 90 45 9.000 29.53 327.13 1.13 SAND 59 45 90 45 9.000 29.53 327.13 1.13 SAND 59 45 90 45 9.000 29.53 327.13 1.13 SAND 59 45 90 45 9.300 30.51 245.02 1.04 SAND 49 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 30.51 245.02 1.04 SAND 49 36 84 42 95.00 31.00 316.10 1.02 SAND 49 36 64 29 36 84 42 95.00 31.00 316.10 1.02 SAND 49 36 64 29 36 84 42 36 50 31.00 316.10 1.02 SAND 49 36 64 29 36 84 42 36 50 31.00 316.10 1.02 SAND 49 36 64 29 36 84 42 36 50 31.00 316.10 1.02 SAND 49 36 64 29 36 84 42 36 50 31.00 316.10 1.02 SAND 49 36 64 29 36 84 42 36 50 31.00 316.10 1.02 SAND 49 36 64 29 36 84 42 36 50 31.00 316.10 1.02 SAND 49 36 64 36 91 36 36 36 36 36 31 30 31.00 316.10 1.02 SAND 49 36 64 36 91 36 36 36 36 36 36 36 36 36 36 36 36 36	rees)
9.600 31.50 313.38 1.25 SAND 63 46 91 43 9.750 31.99 377.07 1.29 SAND 75 54 96 43 9.900 32.48 398.09 1.32 SAND 80 57 97 44 10.050 32.97 368.26 1.29 SAND 74 52 95 43 10.200 33.46 315.53 1.14 SAND 63 45 90 42 10.350 33.96 312.64 1.46 SAND to SILTY SAND 78 55 89 42 10.500 34.45 408.64 1.48 SAND 82 57 97 43 10.650 34.94 232.55 .75 SAND 82 57 97 43 10.650 34.94 232.55 .75 SAND 82 57 97 43 10.950 35.93 78.20 1.14 SAND to SANDY SILT 39 27 61 38 10.950 35.93 78.20 1.14 SAND to SILTY SAND 20 14 49 36 11.250 36.91 124.43 1.46 SAND to SILTY SAND 20 14 49 36 11.250 36.91 124.43 1.46 SAND to SILTY SAND 31 21 62 36 11.400 37.40 96.03 1.55 SILTY SAND to SANDY SILT 32 22 55 37 11.550 37.89 78.22 1.69 SILTY SAND to SANDY SILT 32 22 55 37 11.50 38.39 94.73 1.77 SILTY SAND to SANDY SILT 32 22 55 37 11.550 38.88 76.52 1.75 SILTY SAND to SANDY SILT 32 21 54 36 11.850 38.88 76.52 1.75 SILTY SAND to SANDY SILT 32 21 54 36 12.000 39.37 73.23 2.09 SILTY SAND to SANDY SILT 32 21 54 36 12.000 39.37 73.23 2.09 SILTY SAND to SANDY SILT 34 16 47 35 11.850 38.88 76.52 1.75 SILTY SAND to SANDY SILT 35 24 57 37 12.300 40.35 152.41 1.25 SAND to SILTY SAND 38 26 68 36 12.450 40.85 151.54 1.68 SAND to SILTY SAND 38 26 67 36 12.600 41.34 95.41 1.40 SILTY SAND to SANDY SILT 35 24 57 37 12.300 40.35 152.41 1.25 SAND to SILTY SAND 38 25 67 36 12.600 41.34 95.41 1.40 SILTY SAND to SANDY SILT 32 21 54 36 36 36 36 36 36 36 36 36 36 36 36 36	**-1.1.23.1.1.33.22.22.22.23.33.4.23.33.4.32.23.1.8.6.6.87.6.6.6.57.8.8

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 34.0 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)

Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH

PHI - OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

SOUNDING : CPT-34A

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)			10 to 10 to 10 to 10	(%)	(tsf)	(Degrees)
13.800 13.950 14.100 14.250 14.400 14.550 14.700 14.850	45.28 45.77 46.26 46.75 47.24 47.74 48.23 48.72	138.79 113.77 77.93 72.38 150.07 174.06 149.56 312.53	1.51 1.38 2.18 3.79 1.81 1.73 2.61	SAND to SILTY SAND SAND to SILTY SAND SILTY SAND to SANDY SILT CLAYEY SILT to SILTY CLAY SILTY SAND to SANDY SILT SAND to SILTY SAND SILTY SAND to SANDY SILT SAND	35 28 26 36 50 44 50 63	23 18 17 23 32 28 32 40	64 58 47 66 70 66 87	4.1	38.0 37.0 35.5 38.0 38.5 38.0 42.0
15.000 15.150	49.21 49.70	310.79 297.77	1.48	SAND to SILTY SAND	78 0	49 0	86		41.5 .0

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 34.0 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
NI(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

********************** *

CPT INTERPRETATIONS

SOUNDING : CPT-35A PROJECT No.: 02-1571-4 * : RIVER PARK CONE/RIG: 471/GO-KP/R#4 PROJECT

DATE/TIME: 03-11-02 15:29

PAGE 1 of 2

DEPTH	DEPTH	TIP RESISTANCE	PRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(}				(%)	(tsf)	(Degrees)
			93711320011111111111111111111111111111111	SANDY SILT tO CLAYEY SILT SANDY SILT tO CLAYEY SILT SANDY SILT tO CLAYEY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND	X12323250344727	212443444354232	57555107 5775577	1.7	050505055555050505050555555050050050050

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 55.0 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
DRI _ OVERBURDEN NORMALIZED POUTVALENT PRICTION ANGLE

PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

SOUNDING: CPT-35A

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
	-	***************************************	***	AC 1800 No. 190 No. 400 No. 400 No. 400 No. 190 No. 190 No. 190 No. 400 No. 400 No. 400 No. 400 No. 400 No. 400	~ ~ ~ ~ ~			~ ~ ~ ~ ~	*****
6.300	20.67	143.47	1.32	SAND to SILTY SAND	36	32	74		41.0
6.450	21.16	130.44	2.32	SILTY SAND to SANDY SILT	43	39	71		40.0
6.600	21.65	143.81	1.28	SAND to SILTY SAND	36	32	74		40.5
6.750	22.15	173.23	1.06	SAND to SILTY SAND	43	38	79		42.0
6.900	22.64	226.45	1.57	SAND to SILTY SAND	57	49	86		43.0
7.050	23.13	243.34	1.10	SAND	49	41	88		43.0
7.200	23.62	210.68	.54	SAND	42	35	83		42.5

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 55.0 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

CPT INTERPRETATIONS

SOUNDING : CPT-36 PROJECT No.: 02-1571-4 CONE/RIG: 471/GO-KP/R#4 PROJECT : RIVER PARK

DATE/TIME: 03-12-02 11:26

* *

PAGE 1 of 2

*

DEPTH	DEPTH	TIP RESISTANCE (tsf)	FRICTION	SOIL BEHAVIOR TYPE				Su	PHI
(m)			RATIO (%)	***************************************	****	****	(%)	(tsf)	(Degrees)
1111111112222222333333333334444444555555566	9887654443211009877655433210009876554322110098 112233445556677888999111111111111111111111111111111	7.84.96.4.00.1.0.3.8.9.7.1.0.5.0.7.66.9.8.0.6.4.2.0.1.8.3.9.1.4.6.4.2.0.1.8.3.9.1.0.7.9.9.9.8.8.2.8.9.5.3.9.7.7.0.0.4.8.9.4.2.6.8.6.4.2.0.1.8.3.9.1.0.0.7.9.9.9.8.8.7.4.7.0.1.4.8.9.9.4.2.6.8.6.4.2.0.1.8.3.9.1.0.0.7.9.9.9.8.8.7.4.7.0.1.4.6.9.9.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	890794189088376647000750054964731915199941688472 1.1. 21111 1. 22111222211	SENSITIVE FINE GRAINED SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SAND SAND SAND SAND SAND SAND SAND	49872659875322204591682392367503319718730 11222238223675453234355333545657753544445	65976107041200988890873367710824408695406 12234446445007544434546643365565775344444	45566888777891099888899001488333709083388 501	6.9	0050505005000000550000000550000000550000

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT #T = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 36.0 ft
N(60) = BQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
DI = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
SU = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

SOUNDING : CPT-36

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
90 to 40 to 40	** ** ** **		***		~~~~			~~~~	****
6.300	20.67	250.56	1.07	SAND	50	45	90		44.0
6.450	21.16	257.40	1.13	SAND	51	45	91		44.0
6.600	21.65	193.75	1.23	SAND to SILTY SAND	48	42	82		42.5
6.750	22.15	172.51	1.28	SAND to SILTY SAND	43	37	79		42.0
6.900	22.64	156.98	1.02	SAND to SILTY SAND	39	34	76		41.0
7.050	23.13	122.03	1.74	SILTY SAND to SANDY SILT	41	35	68		39.5
7.200	23.62	147.61	2.30	SILTY SAND to SANDY SILT	49	41	73		40.0
7.350	24.11	219.63	2.23	SILTY SAND to SANDY SILT	73	61	84		42.5

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 36.0 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

CPT INTERPRETATIONS

SOUNDING : CPT-37 PROJECT No.: 02-1571-4 PROJECT : RIVER PARK CONE/RIG: 471/GO-KP/R#4

DATE/TIME: 03-12-02 12:45

*

PAGE 1 of 2

DEPTH	TIP	FRICTION	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(ft)	(tsf)	(\$)				(%)	(tsf)	(Degrees)
1122334455667788	112.71 977.246 977.226 109.885 109.827 96.525 1177.298 1177.36 165.37 164.51 164.51 1770.114 1214 1214 1214 1213	. 110 1.11 1.29 1.55 1.47 2.80 2.80 2.80 1.84 2.85 1.85 2.85 1.85 2.85 1.85 2.85 1.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2	SILTY SAND tO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SILTY SAND TO SANDY SILT SAND TO SILTY SAND SAND TO SILTY SAND SAND TO SILTY SAND SILTY SAND TO SANDY SILT SAND TO SILTY SAND SAND SAND SAND SAND	NA47002009949194970	739478114262811221	36933503919192848	1.2	0500555055500 4477876665 44776665
9900111223 1111223	130.596 114.596 121.72 146.428 146.428 145.555 145.41	.6977 21.779 21.779 11.788 11.45	SAND SAND to SILTY SAND SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SAND to SILTY SAND SAND SAND SAND SAND to SILTY SAND SAND to SILTY SAND	891679764 224474677	574948328	8778838029 1877		16543334466333 44433344466333 44443334466333
13.78 14.27 14.76 15.26 15.75 16.24	139.79 139.75 151.39 289.55 253.30 241.30		SAND SAND to SILTY SAND SAND to SILTY SAND SILTY SAND to SANDY SILT SAND SAND	785718 755718	31 38 40 100 52 49	799119943 9993		43.0 43.5 45.0 45.5
1772210998	258.25 205.82 223.64 166.33 150.77 143.23 106.71 119.78	2.74 1.19 1.34 1.61 2.45 1.91	SILTY SAND to SANDY SILT SAND to SILTY SAND	654484848 66448888 6644888	6544343A	9779077569		44342505550 44342505550 44215505550
	(ft)	(tt) (tt) (tt) 112.366 1.49 1.27.366 1.298 1.298 1.298 1.397 1.298 1.397 1.396 1.397 1.396 1.397 1.396 1.397 1.396 1.397 1.396 1.397 1.399 1.391	RESISTANCE RATIO (ft) (tsf) (%)	(tt)	RESISTANCE RATIO (tsf)	### RESISTANCE RATIO {\frac{1}{8}}	RESISTANCE RATIO	RESISTANCE (tsf) (%) (tsf) (%) (tsf) (tsf) (tsf) (tsf) (tsf) ((tsf) (tsf)

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 37.0 ft
N(60) = BQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

SOUNDING : CPT-37

DEPTH	DEPTH	TIP	FRICTION	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(2)		**********	~~~~	(%)	(tsf)	(Degrees)
(m) 6.300 6.450 6.600 6.750 6.900 7.050 7.200 7.350 7.500 7.650 7.800 7.950 8.100 8.250 8.400 8.550 8.700 8.550 9.000 9.150 9.300 9.450 9.300 9.450 9.300 9.450 9.300 9.450 9.300 9.450 9.350 10.500 10.500 10.500 10.500 10.500 10.500 11.200 11.250 11.400 11.550	(ft) 20.67 21.16 21.65 22.15 22.64 23.13 23.62 24.11 24.61 25.59 26.57 27.07 27.56 28.05 28.05 28.54 29.53 30.51 31.00 31.50 31.99 32.48 33.96 34.45 34.	RESISTANCE (tsf) 196.20 201.34 177.20 152.96 188.53 181.92 187.83 202.23 179.35 96.56 64.75 87.57 99.68 94.14 143.61 95.64 196.30 284.02 303.35 462.22 393.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.20 424.92 342.62 339.29 388.85 356.17 364.14 304.80 299.91	RATIO (%) 2.56 1.64 1.27 1.24 1.47 1.30 1.28 1.27 1.05 1.47 2.30 1.35 1.62 1.33 1.81 1.40 1.15 1.14 2.22 1.39 1.21 1.09 1.21 1.09 1.05 1.08 1.20 1.37 1.33 1.45 1.37 1.33 1.45 1.37 1.31	SILTY SAND to SANDY SILT SAND to SILTY SAND SAND to SILTY SAND SAND to SILTY SAND SAND to SILTY SAND SAND to SILTY SAND SAND to SILTY SAND SAND to SILTY SAND SAND to SILTY SAND SAND to SILTY SAND SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SILTY SAND to SANDY SILT SAND to SILTY SAND SAND SAND SAND SAND SAND SAND SAND	65 50 444 38 47 45 47 51 36 32 24 48 32 39 57 76 100 58 66 57 55 50 58 74 71 73 61 60		83 84 80 75 81 79 80 82 78 60 58 79 89 91 100 93 88 92 91 89 93 88 92 93 88 93 93 87 93 93 93	4.2	(Degrees)
						41 40 49 51 45 49 45 52 49	93 94 90 93		

^{*}INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 120 pcf
ASSUMED DEPTH OF WATER TABLE = 37.0 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Appendix B

Job No: 04-803S-4 Page B1

APPENDIX B

GEOTECHNICAL LABORATORY INVESTIGATION

1. General

- a. The purpose of the laboratory investigation was to evaluate the geotechnical engineering characteristics of the various materials encountered during the field investigation. The investigation program was carried out employing, wherever practical, currently accepted test procedures of the American Society of Testing and Materials (ASTM) and California Test Standards.
- b. Relatively undisturbed ring samples and bag samples were obtained during the course of the field investigation. Laboratory sample identification is by project name and number, drill hole number or trench number and depth.
- c. Geotechnical laboratory testing is classified in two major subgroups:
 - Index Properties Tests, and
 - Geotechnical Engineering Properties Tests
- d. We also performed soluble chloride and sulfate contents, resistivity and pH tests to evaluate the corrosivity potential of onsite soils and bedrock.

2. Index Properties Tests

The following Index Properties test were performed on native soils collected during the field exploration.

TEST TYPE	No. of Tests Performed	Testing Standard
Moisture Content & Unit Weight	50	ASTM D 2216 and 2937
Percent-Finer Than #200 Sieve	29	ASTM D 1140
Particle-size Analysis	1	ASTM D 422

The purpose of each test is briefly described below.

a. The in-situ water content and dry unit weight of native soils provided an indication of their strength before additional testing was performed. These data, in conjunction with field blow count data, served in the selection of samples for additional testing. Test results are presented on the Drill Hole Logs within **Appendix A**.

APPENDIX B

- b. Minus No. 200 wash-sieve analyses were performed on selected samples to evaluate only the percentage of fine particles smaller than 75 microns within the soil. These tests were conducted to aid in classifying the soils in accordance with the Unified Soil Classification System (USCS). Test results are presented on the Drill Hole Logs within **Appendix A**, and in other test reports within **this Appendix**.
- c. A complete mechanical particle-size analyses of soil fractions larger than 75 microns (No. 200 sieve) was conducted to aid in classifying the soils in accordance with the Unified Soil Classification System (USCS). Test results are presented on Figure B1.1 within this Appendix.
- d. Soluble sulfates and chloride contents, resistivity and pH tests were conducted to access the potential corrosive effects of soils on concrete, ferrous and non-ferrous metals. Test results are presented in **Table B1** within **this Appendix**.

TEST TYPE	No. of Tests Performed	Testing Standard
Sulfate-Content	2	Caltrans Test 417
Chloride-Content	And the control of th	Caltrans Test 422
Resistivity	2	Caltrans Test 643
рН		LaMotte

3. Geotechnical Engineering Properties Tests

The following Geotechnical Engineering Property Tests were performed on bulk samples or relatively undisturbed ring samples, as applicable, collected at this site.

Test Type	No. of Tests Performed	Testing Standard
Compaction (Modified Proctor)	2	ASTM D 1557
Consolidation	2	ASTM D 2435
Direct Shear	5	ASTM D 3080

The purpose of each test is briefly described below.

a. Compaction (Modified Proctor) tests were performed on selected samples to assess the moisture-density relationship of materials that may be used for recompaction at removal areas. Test results are presented on Figures B2.1 and B2.2 within this Appendix.

Job No: 04-803S-4

Page B2

APPENDIX B

- b. Direct shear tests were performed on relatively undisturbed or remolded test specimens using a displacement-controlled direct shear machine. Samples were tested at normal pressures ranging from approximately 1000 psf to 10,000 psf in order to define both the peak and residual shear strength parameters. Each sample was consolidated under the normal load at saturated conditions and then sheared horizontally at a controlled displacement rate until a residual strength was attained. For remolded specimens, passing no. 4 sieve material was used. Test results are plotted on Figures B3.1 through B3.5 within this Appendix.
- c. One-dimensional consolidation tests were performed on selected ring samples to assess the soils compressibility characteristics by subjecting the specimens to loads ranging from 120 psf to 8,000 psf, and with the addition of water at loads near the overburden pressure. Tests results are plotted on **Figures B4.1** and **B4.2** within this Appendix.

The following attachments completed this Appendix

LABORATORY TEST RESULTS

20.00 2	\$\$P \P & \$L & \$ & \P & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ &	
•	Corrosion Test Results on Soil Samples	Table B1
•	Summary of Shear Strength Test Data	Table B2
	Particle Size Distribution Test Report	Figure B1
	Compaction Test Reports	Figures B2.1 and B2.2
0	Direct Shear Test Results	Figures B3.1 thru B3.5
•	Consolidation Test Reports	Figures B4.1 and B4.2

Job No: 04-803S-4

Page B3

Job No: 04-803S-4 Table B1

APPENDIX B

CORROSION TEST RESULTS ON SOIL SAMPLES

Sample	B-15 @	B-16@
Location	0-15'	0.4'
Bedrock or Soil	SM	SM
Type (USCS)	JIVI	7(8)

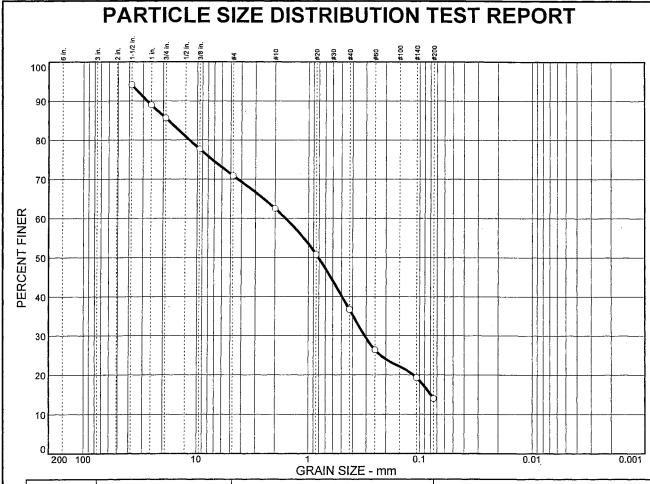
Resistivity (Ω - cm)	1760	3069
Corrosivity	Corrosive	Moderately
Potential ¹	POLLOSIAG	Corrosive

Chemical Analyses

pH	*	7.2
Chloride Cl (ppm)		27
Sulfate SO ₄ (%)	800.0	ND
Concrete exposure to sulfate ²	Negligible	Negligible

ND = not detected

¹ Per County of Los Angeles Classification ² Per 1997 UBC - Table 19-A-4


APPENDIX B

Job No: 04-803S-4 Table B2

.4

SUMMARY OF SHEAR STRENGTH TEST DATA

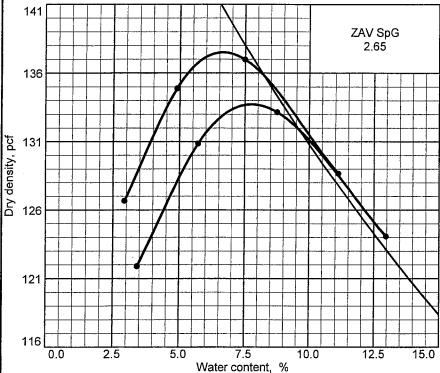
	Boning on	FiG.	Peak		RESIDUAL		Unit
MATERIAL	TEST PIT NO.	No.	COHESION (psf)	Рнιφ	Cohesion (psf)	Рніф	WT. (PCF)
Terrace Deposits (Qt)	B-15 @ 15, 30, & 50'	B3.1	802	41.2	439	38.2	127
rendce pehosits (dt)	B-16 @ 5, 15, & 30'	B3.2	1321	38.3	1093	34.1	WT. (PCF)
Bedrock (TOs) Cross-Bedding	B-17 @ 60'	B3.3	1740	33.6	794	32.1	126
Quaternary Alluvium (Qal)	RW-2 @ 25'	B3.4	866	34.9	404	33.7	125
Compacted Fill (Cef)	T-56 @ 5-7'	B3.5	680	37.6	314	30.6	125

	% CORPLES	% GRAVEL		% SAND			% FINES	
	% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0			14.8	8.4	25.8	22.7	14.0)
Г								
Г								

	SOIL DATA							
SYMBOL SOURCE SAMPLE DEPTH DESCRIPTION DESCRIPTION								
0	T-56		5-7	Dark brown silty sand with gravel	SM			
			<u> </u>					

PARTICLE SIZE DISTRIBUTION TEST REPORT Client: Synergy

ALLAN E. SEWARD


ENGINEERING GEOLOGY, INC.

Project: Tentative Tract 60258

Project No.: 04-803S-4

Figure B1

COMPACTION TEST REPORT

Curve No.

A

Test Specification:

ASTM D 1557-00 Method C Modified Oversize correction applied to each point

Hammer Wt.: 10 lb.

Hammer Drop: 18 in.

Number of Layers: five

Blows per Layer: 56

Mold Size: .075 cu.ft.

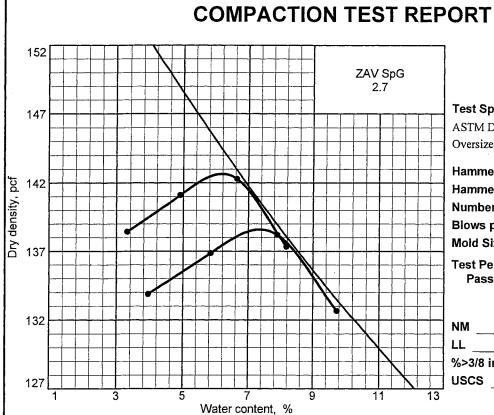
Test Performed on Material

Passing _____3/4 in. Sieve

 Soil Data

 NM
 Sp.G.
 2.65

 LL
 PI


 %>3/4 in.
 14.3
 %<#200</th>
 14.0

 USCS
 SM
 AASHTO

TESTING DATA

Γ	1	2	3	4	5	6
WM + WS	15.76	16.68	17.17	16.82		
WM	6.31	6.31	6.31	6.31		
WW + T #1	536.06	557.30	576.96	655.87		
WD + T #1	519.43	528.95	533.30	584.27		
TARE #1	32.34	31.77	33.91	31.96		
WW + T #2	r					
WD + T #2						
TARE #2						
MOISTURE	2.9	4.9	7.5	11.1		
DRY DENSITY	126.7	134.9	137.0	128.7		

ROCK CORRECTED TEST RESULTS	Material Description
Maximum dry density = 137.5 pcf	Dark brown silty sand with gravel
Optimum moisture = 6.5 %	
Project No. 04-803S-4 Client: Synergy	Remarks:
Project: Tentative Tract 60258	
• Source: T-56 Elev./Depth: 5-7	
COMPACTION TEST REPORT	
ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.	Figure B2.1

Curve No.

Test Specification:

ASTM D 1557-00 Method B Modified Oversize correction applied to each point

Hammer Wt.: 10 lb.

Hammer Drop: 18 in.

Number of Layers: five

Blows per Layer: 25

Mold Size: .03333 cu.ft.

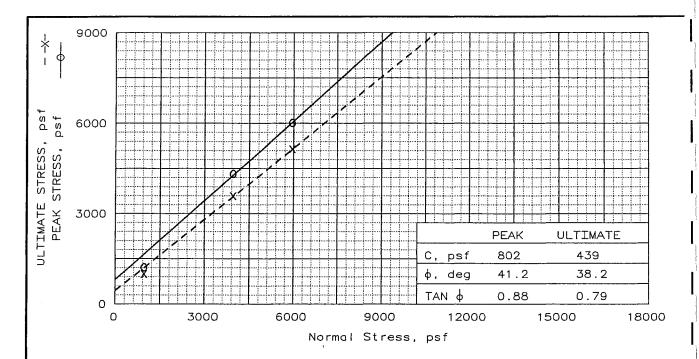
Test Performed on Material

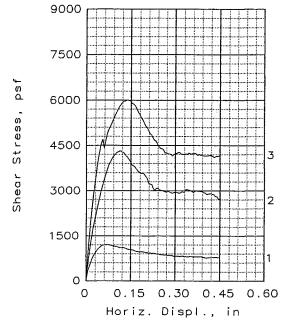
Passing 3/8 in. Sieve

 Soil Data

 NM
 Sp.G.
 2.7

 LL
 PI


 %>3/8 in.
 16.0
 %<#200</th>
 11.9


 USCS
 SM
 AASHTO

TESTING DATA

	1	2	3	4	5	6
WM + WS	9.09	9.28	9.42	9.30		
WM	4.45	4.45	4.45	4.45		
WW + T #1	411.65	432.99	471.01	492.36		
WD + T #1	397.16	410.87	438.85	451.51		
TARE #1	29.33	32.13	31.69	31.87		
WW + T #2						
WD + T #2						
TARE #2						
MOISTURE	3.3	4.9	6.6	8.2		
DRY DENSITY	138.4	141.1	142.3	137.3		

ROCK CORRECTED TEST RESULTS	Material Description			
Maximum dry density = 142.5 pcf	Yellowish brown silty sand			
Optimum moisture = 6 %				
Project No. 04-803S-4 Client: Synergy	Remarks:			
Project: Tentative Tract 60258				
Source: B-15 Elev./Depth: 0-15				
COMPACTION TEST REPORT	·			
ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.	Figure B2.2			

Sa	mple No.:	1	2	3	
	WATER CONTENT, %	5.5	3.5	4.4	
4	DRY DENSITY, pcf	113.2	115.4	110.8	
INITIAL	SATURATION, %	31.7	21.1	23.8	
H	VOID RATIO	0.461	0.434	0.493	
H	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.00	1.00	1.00	
	WATER CONTENT, %	16.5	13.6	17.2	
ST	DRY DENSITY, pcf	115.2	121.6	113.6	
TES	SATURATION, %	100.0	100.0	100.0	
	VOID RATIO				
<	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	0.98	0.95	0.98	
NOI	RMAL STRESS, psf				
PE,	AK STRESS, psf	1212	4320	6011	
1	DISPLACEMENT, in	0.07	0.12	0.14	
UL.	TIMATE STRESS, psf	996	3588	5148	
	DISPLACEMENT, in	0.17	0.19	0.20	
St	rain rate, in/min	0.0100	0.0100	0.0100	

SAMPLE TYPE: Undisturbed

DESCRIPTION: Poorly graded SAND

(SP)

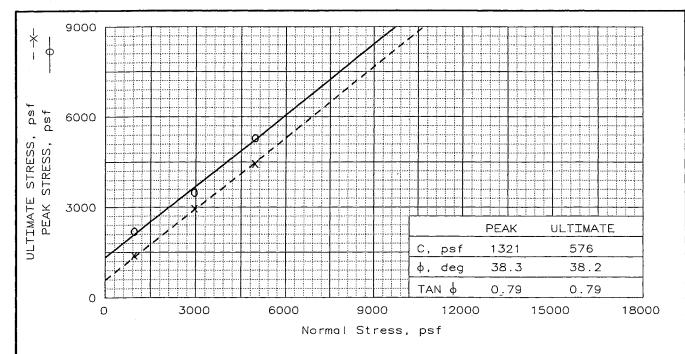
SPECIFIC GRAVITY= 2.65

REMARKS: Terrace Deposits (Qt)

CLIENT: Synergy

PROJECT: Tentative Tract 60258

SAMPLE LOCATION: B-15 @ 15, 30, & 50 ft


PROJ. NO.: 04-803S-4

DATE: 6/11/04

DIRECT SHEAR TEST REPORT

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Fig. No.: B3.1

	6000
	5000
, psf	4000
Stress,	3000
Shear	2000
0)	1000
	0 0.15 0.30 0.45 0.60
	Horiz. Displ., in

SA	MPLE NO.:	1	2	3	
	WATER CONTENT, %	2.8	5.4	2.8	
4	DRY DENSITY, pcf	148.5	110.4	130.3	
ĮĮ.	SATURATION, %	64.3	28.5	27.7	
INITIAL	VOID RATIO	0.114	0,499	0.269	
H	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.00	1.00	1.00	
	WATER CONTENT, %	4.2	15.8	11.7	
-	DRY DENSITY, pcf	148.9	116.6	126.2	
1ES	SATURATION, %	100.0	100.0	100.0	
1	VOID RATIO	0.111	0.419	0.311	
₹	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.00	0.95	1.03	
NOI	RMAL STRESS, psf				
PE	AK STRESS, psf	2184	3480	5292	
	DISPLACEMENT, in	0.13	0.12	0.09	
UL.	TIMATE STRESS, psf	1392	2952	4440	
	DISPLACEMENT, in	0.45	0.21	0.15	
St	rain rate, %/min	0.01	0.01	0.01	

SAMPLE TYPE: Undisturbed

DESCRIPTION: Poorly graded SAND

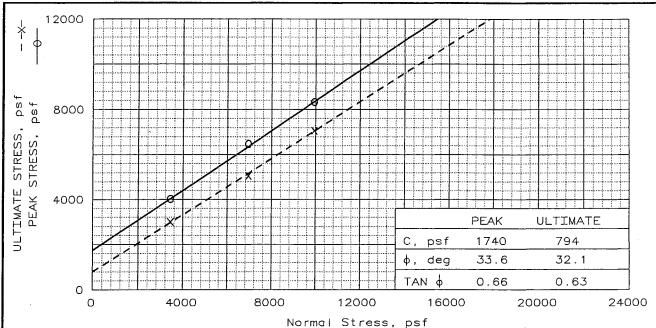
(SP)

SPECIFIC GRAVITY= 2.65

REMARKS: Terrace Deposits (Qt)

CLIENT: Synergy

PROJECT: Tentative Tract 60258


SAMPLE LOCATION: B-16 @ 5, 15 & 30 ft

PROJ. NO.: 04-803S-4 DATE: 6/11/04

DIRECT SHEAR TEST REPORT

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Fig. No.: B3.2

Normal Stress, psf

	9000
	7500
, psf	6000
Stress,	4500
Shear	3000
0,	1500
	0 0.15 0.30 0.45 0.60
	Horiz. Displ., in

	and the second s				
SAMPLE NO.:		1	2	3	
	WATER CONTENT, %	13.2	13.7	13.4	
	DRY DENSITY, pcf	120.4	118.7	121.1	
Ĭ	SATURATION, %	93.3	92.2	96.6	
LINI	VOID RATIO	0.374	0.394	0.367	
H	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.00	1.00	1.00	
	WATER CONTENT, %	14.5	15.7	14.8	
F	DRY DENSITY, pcf	119.6	116.7	118.8	
ES	SATURATION, %	100.0	100.0	100.0	
	LYATA DATTA	0.383	0.418	0.393	
\ <	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.01	1.02	1.02	
NOI	RMAL STRESS, psf				
PE,	AK STRESS, psf	4020	6479	8327	
	DISPLACEMENT, in	0.06	0.09	0.11	
Nr.	TIMATE STRESS, psf	3000	5064	7067	
	DISPLACEMENT, in	0.10	0.13	0.15	
St	rain rate, %/min	0.01	0.01	0.01	

SAMPLE TYPE: Undisturbed

DESCRIPTION: Clayey SANDSTONE

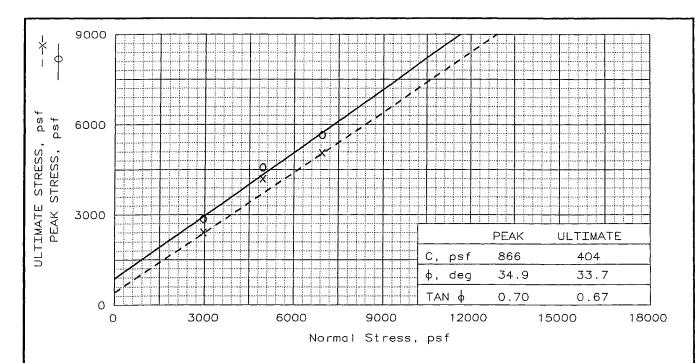
to sandy CLAYSTONE

SPECIFIC GRAVITY= 2.65 REMARKS: Bedrock (TQs)

CLIENT: Synergy

PROJECT: Tentative Tract 60258

SAMPLE LOCATION: B-17 @ 60 ft


PROJ. NO.: 04-803S-4

DATE: 6/11/04

DIRECT SHEAR TEST REPORT

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Fig. No.: B3.3

	6000
. _	5000
, psf	4000
Shear Stress,	2000
	1000
	0 0.15 0.30 0.45 0.60
	Horiz. Displ., in

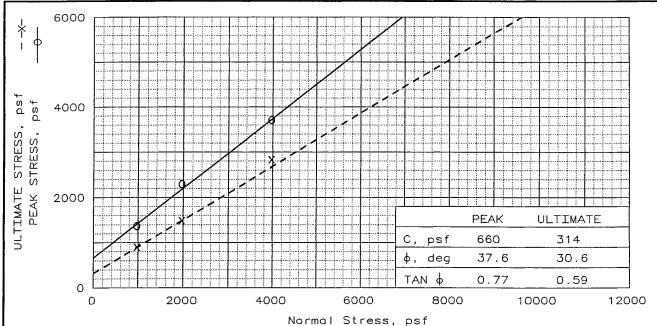
SA	MPLE NO.:	1	2	3	
	WATER CONTENT, %	9.2	9.1	9.3	
7	DRY DENSITY, pcf	119.5	125.9	121.8	
12	SATURATION, %	63.2	76.4	69.0	
INITIAL	VOID RATIO	0.384	0.314	0.358	
H	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.00	1.00	1.00	
	WATER CONTENT, %	13.8	12.5	14.5	
ST	DRY DENSITY, pcf	121.1	124.2	119.6	
TES	SATURATION, %	100.0	100.0	100.0	
1	VOID RATIO				
₹	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	0.99	1.01	1.02	
NOI	RMAL STRESS, psf	3000	5000	7000	
PE/	PEAK STRESS, psf		4572	5651	
	DISPLACEMENT, in	0.12	0.14	0.13	
UL.	TIMATE STRESS, psf	2412	4200	5064	
	DISPLACEMENT, in	0.22	0.22	0.19	
St	rain rate, %/min	0.01	0.01	0.01	

SAMPLE TYPE: Undisturbed

DESCRIPTION: Silty SAND (SM)

SPECIFIC GRAVITY= 2.65 REMARKS: Alluvium (Qal) CLIENT: Synergy

PROJECT: Tentative Tract 60258


SAMPLE LOCATION: RW-1 @ 25 ft

PROJ. NO.: 04-803S-4 DATE: 6/11/04

DIRECT SHEAR TEST REPORT
ALLAN E. SEWARD
ENGINEERING GEOLOGY, INC.

Fig. No.: B3.4

1

	, ,	
6000		
6000	SAMPLE NO .	

	6000
	5000
, psf	4000
Stress	3000
Shear	2000
	1000
	0 0.15 0.30 0.45 0.60
	Horiz. Displ., in

SA	MPLE NO.:	1	2	3	
	WATER CONTENT, %	10.1	9.9	9.7	
1	DRY DENSITY, pcf	125.9	125.6	125.6	
INITIAL	SATURATION, %	85.4	82.9	81.1	
H	VOID RATIO	0.314	0.317	0.317	
H	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.00	1.00	1.00	
	WATER CONTENT, %	12.1	12.4	12.5	
-	DRY DENSITY, pcf	125.3	124.6	124.2	
TES	SATURATION, %	100.0	100.0	100.0	
1	LYOTO PATTO				
₹	DIAMETER, in	2.42	2.42	2.42	
	HEIGHT, in	1.01	1.01	1.01	
NO	RMAL STRESS, psf	1000	2000	4000	
PE	AK STRESS, psf	1368	2292	3708	
	DISPLACEMENT, in	0.04	0.05	0.06	
UL.	TIMATE STRESS, psf	900	1488	2832	
(DISPLACEMENT, in	0.12	0.45	0.45	
St	rain rate, %/min	0.01	0.01	0.01	

SAMPLE TYPE: Remold

DESCRIPTION: Silty SAND (SM)

SPECIFIC GRAVITY= 2.65

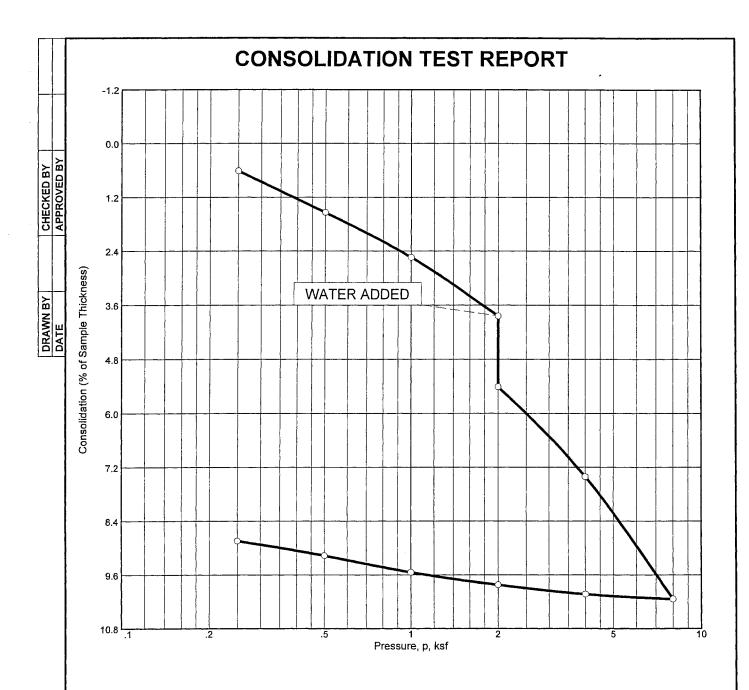
REMARKS: Remolded to 90% MDD

(Qsw derived)

Fig. No.: B3.5

CLIENT: Synergy

PROJECT: Tentative Tract 60258


SAMPLE LOCATION: T-56 @ 5-7 ft

PROJ. NO.: 04-803S-4 DATE: 6/11/04

DEDECT OFFICE TEST OFFICET

DIRECT SHEAR TEST REPORT

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

SUMMARY OF TEST RESULTS

	DRY DENSITY (pcf)	MOISTURE CONTENT, (%)	SATURATION (%)	HEIGHT (in.)	VOID RATIO	SPECIFIC GRAVITY	C _c	P' _o (ksf)	P _C (ksf)	uscs
INITIAL	114.8	5.6	33.8	1.000	0.441	2.65	0.12	1 (0	4.16	CD
FINAL	125.9	19.0	100.0	0.912	0.314	2.65	0.13	1.68	4.16	SP

Source: T-65

Material Description: Sand and pebbly sand with cobbles

Remarks:

ALLAN E. SEWARD

Client: Synergy

Project: Tentative Tract 60258

ENGINEERING GEOLOGY, INC.

Job No.: 04-803S-4

Figure B4.1

Elev./Depth: 14

Appendix C

LIQUEFACTION POTENTIAL ASSESSMENT AND EVALUATION OF EARTHQUAKE-INDUCED SETTLEMENTS

1.0 INTRODUCTION

We have completed our liquefaction and cyclic settlements evaluations of the subject property. The results of these evaluations affected the removals and recompaction recommended for the project. Thus, the recommended removal depths are based, in part, on upper non-liquefiable soil layers (including proposed fills to be placed above the existing ground surface), and/or cyclic settlements, or blow-count data from the borings (i.e. weak soils). The need for removals to mitigate static behavior of existing soils is evaluated in the main text of this report.

The combination of the removal, any existing non-liquefiable layer immediately beneath the removal, and the additional fill (as applicable) provided an ultimate cap of non-liquefiable soils at each location analyzed. These caps are sufficient (or much more than adequate at locations of proposed high fills) to mitigate liquefaction at these locations and to attenuate any effects from cyclic settlements remaining at depth.

2.0 DATA AND ASSUMPTIONS

Based on the probabilistic seismic hazard analyses (PSHA) presented in **Appendix D** of this report, a design basis earthquake (DBE) magnitude of 6.5 generating an estimated peak horizontal ground acceleration of 0.70g was considered for analysis for this report. A horizontal acceleration of 0.50g corresponding to an earthquake with a weighted magnitude of 7.5 was used for the liquefaction and earthquake-induced settlement analyses.

For the proposed school site, horizontal peak ground accelerations of 0.84g and 0.60g were used in the analyses.

Basic information included soil types, existing ground water levels and blow counts obtained from field data. These data are plotted versus depth on Figures C1 through C5, graphs (a) and (b).

For analysis, in the absence of well data, a conservative historic high ground water depth of 5 feet was used.

Job No: 04-803S-4

Seed et al. (1984) presents design curves based on field performance during earthquakes (cases where evidence of liquefaction has been observed), which provides a higher level of confidence in the analyses results. These curves distinctly separate liquefiable and non-liquefiable soil conditions. Therefore, liquefiable zones in this analysis are based upon the premise that liquefaction potential exists if the cyclic resistance ratio (CRR) against liquefaction is less than the earthquake-induced cyclic stress ratio; this is to say, a stress ratio factor of safety less than unity. The earthquake-induced settlement analysis also considers zones that may settle somewhat even though the factor of safety may be greater than one (i.e. a non-liquefaction condition).

3.0 ASSESSMENT OF LIQUEFACTION POTENTIAL

3.1 Method of Analysis

Liquefaction is a phenomenon whereby a saturated granular soil temporarily loses its strength because of the buildup of pore water pressure during seismic excitation. This loss of strength may cause structures founded on these soils to experience subsidence and/or lateral movement due to earthquakes.

Liquefaction potential analyses are performed by a method proposed by Seed, et al. (1984) as mentioned in Section 2 above. Some data provided by the liquefaction analyses are used for the evaluation of earthquake-induced settlements. Per Seed's method, the earthquake-induced stresses at any depth are estimated and compared with empirically based stresses (strength) for sites where liquefaction has occurred.

The calculation of available cyclic resistance ratios versus expected (seismically induced) cyclic shear stress ratios is based on existing soil data from CPTs, such as effective overburden pressure, blow count and percent fines. Corrected SPT blow count data are utilized to determine the strength/overburden pressure ratio for 7 ½ magnitude earthquakes. Correction of blow count for normalized overburden pressure is provided by Liao and Whitman (1986) by the equation $C_n = SQRT(1/\sigma'_o)$, where $\sigma'_o =$ effective overburden pressure in TSF. Based on data by Liao and Whitman, we interpret a maximum value of C_n of 2 and a minimum of 0.5. The formula for the corrected SPT "N" is: $N_1 = C_n N$.

Job No: 04-803S-4

Correction for fines is provided following procedures of Youd & Idriss (NCEER, 1997). This correction provides equivalent blow count data for clean sand, which is ultimately used to assess strength against liquefaction.

The earthquake-induced horizontal stress is calculated per the following equation by Seed (1984):

Earthquake-induced stress = τ_{av} =0.65 (a_{max}/g) $\sigma_{o} r_{d}$

Where a_{max}/g= ratio of peak ground acceleration and acceleration of gravity.

 σ_0 =Total overburden pressure

 r_d = stress reduction factor to account for soil deformability

Theoretical factors of safety against liquefaction are calculated using corrected blow count data per Youd and Idriss (NCEER, 1997).

3.2 Results of Liquefaction Potential Assessment

Results of computerized calculations for the assessment of liquefaction potential are presented in the attached, Figures C1 through C5, graphs (a), (b) and (c).

4.0 ESTIMATION OF EARTHQUAKE-INDUCED SETTLEMENTS

4.1 Method of Analysis

Earthquake-induced settlements were estimated using procedures presented by Tokimatsu and Seed (1987) for dry/moist soils (above the water table) and saturated sands. Settlement analyses were performed for the same location analyzed for liquefaction potential to estimate the possible range of settlements to be expected at the project site.

Volumetric strains for soils above the water table were estimated using blow count data and cyclic shear strain. The volumetric strain was then doubled to account for multidirectional effects (the volumetric strain data were originally obtained from one-dimensional laboratory testing). Seismic settlement was obtained by multiplying the thickness of the soil layer by the calculated volumetric strain.

Job No: 04-803S-4

Blow counts used in the settlement calculations above the water table were not corrected for fines content (but were corrected for other factors addressed in the liquefaction potential assessment). Although the referenced procedure applies to both silty and clean sands, the use of the blow counts without corrections for fines content produces more conservative results.

Seismic settlements for saturated sands were estimated using blow count data corrected for fines content (i.e. blow counts for equivalent clean sand were used) and other factors used for liquefaction analyses. The referenced procedure applies only to saturated clean sands.

Volumetric strain for saturated sands was estimated using the calculated earthquake-induced cyclic shear stress and corrected blow count. The seismic settlement was obtained by multiplying the thickness of the liquefied soil layer by the volumetric strain. The volumetric strain obtained from the design chart for saturated sands includes the multidirectional effect.

4.2 Results of Earthquake-Induced Settlement Analysis

The results of computerized cyclic settlement analyses are presented in **Figures C1** through **C5**, **graphs (d)**, and summarized in **Table C1**. Actual seismic settlements are expected to be less due to built-in conservatism in the procedures. A cumulative total settlement of 1.57 inches has been estimated at the location of RW-2. Considering the above results, together with the planned 36 foot removal and proposed additional 52 feet of recompacted fill resulting in a **cap of non-liquefiable soils of 86 feet**, the differential settlements are expected to be no greater than 0.43 inch in a horizontal distance of 30 feet (per CDMG SP 117).

Maximum cumulative total settlements of 3.87 inches and 3.20 inches have been estimated at the locations of RW-1 and RW-3, respectively. The proposed removal and recompaction of up to 34 of material feet and additional fill heights of up to 105 feet will eliminate potential differential settlements at these locations.

Job No: 04-803S-4

5.0 CONCLUSIONS

The results of the liquefaction assessment indicated that some liquefaction-prone zones exist in the alluvium on site, provided ground water rises to within the upper 5 feet below the existing ground surface. Recommended removals and recompaction will partly eliminate liquefiable zones at some locations.

Certified compacted fill used to replace proposed removals shown in the Geologic/Geotechnical Map, existing non-liquefiable soils immediately beneath the removals, and additional proposed fills above existing grade, will result in substantial caps (see Table C1) which are anticipated to mitigate any probability of surface manifestation and attenuate/mitigate effects from cyclic settlements due to soil replacement and/or expected bridging effects.

Based upon analytical procedures set forth by Bartlett & Youd (1995), no lateral spreading due to liquefaction is expected at this site for the following reasons:

- Alluvial subsurface soils are essentially horizontally layered.
- There is not a free-face toward which liquefied soils could move, and for the "ground surface condition" (Bartlett & Youd), granular soils with N1₍₆₀₎ less than 15 in the liquefaction-prone zones are few, isolated and thin (cumulative thickness <1m at applicable locations).
- It should be noted that the cyclic settlement calculations include multi-directional effects in the volumetric strains. Proposed removals and recompaction and additional fills will provide caps which will attenuate the effects of strains at depth.

6.0 RECOMMENDATIONS

Owing to the typically low magnitude of estimated conservative earthquake-induced differential settlements, and the proposed recompacted layers and additional fills resulting in significantly thick caps of non-liquefiable soils (see **Table C1**), special measures to further mitigate these settlements are considered to be unnecessary.

Job No: 04-803S-4

Job No: 04-803S-4

Page C6

APPENDIX C

The following attachments are located within the Appendix.

References

Summary of Cyclic Settlement Analyses and Removals

(Based on RW & HS Data)

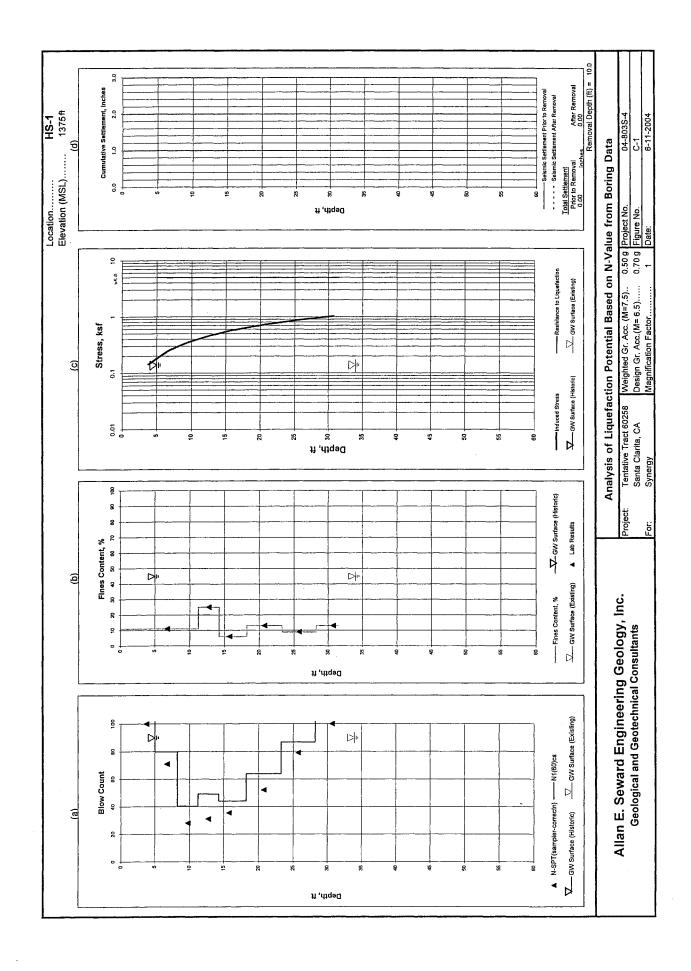
Table C1

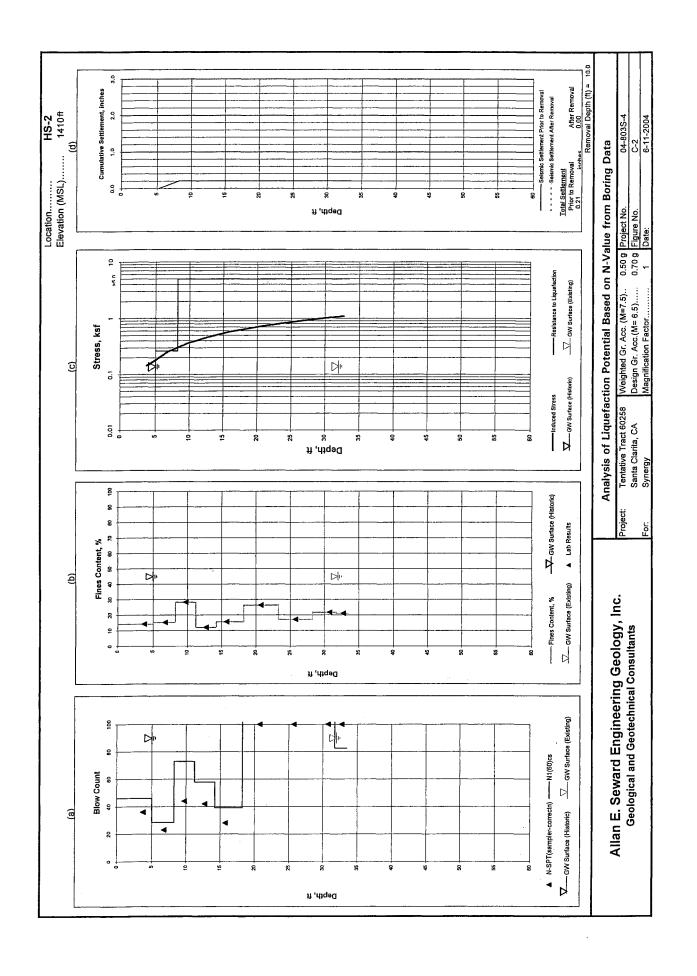
Graphs of the Assessment of Liquefaction Potential and Earthquake-Induced

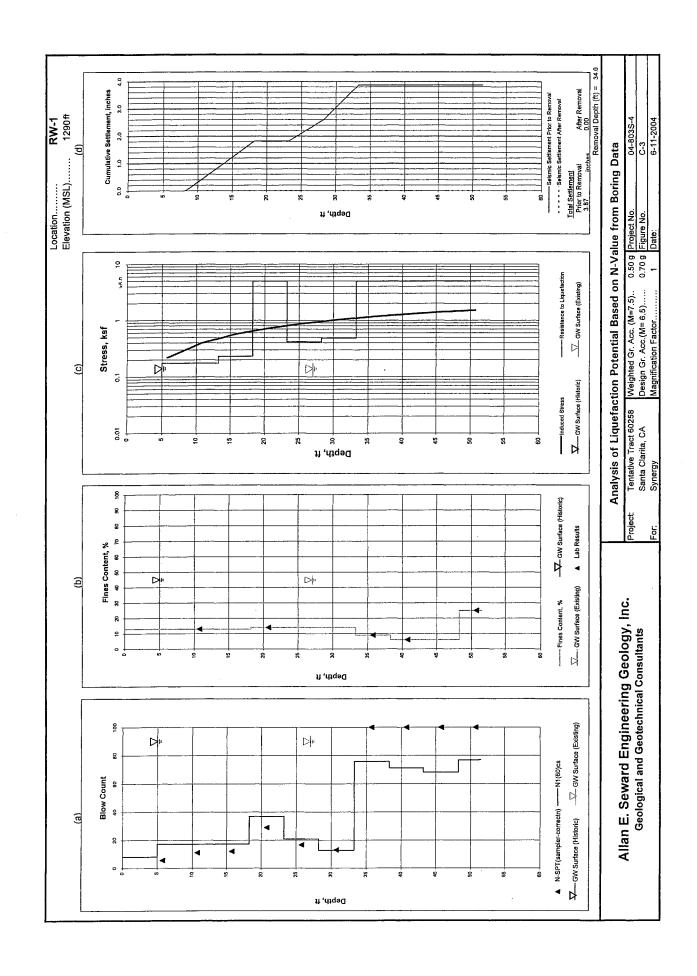
Settlements: HS-1, HS-2, and RW-1 through RW-3

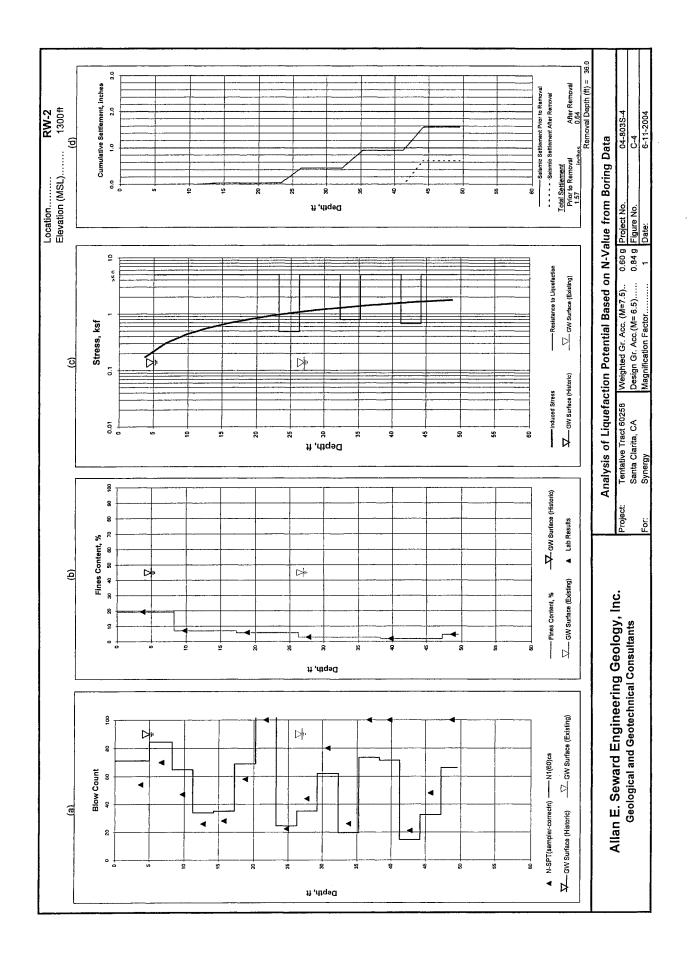
Figures C-1 thru C-5

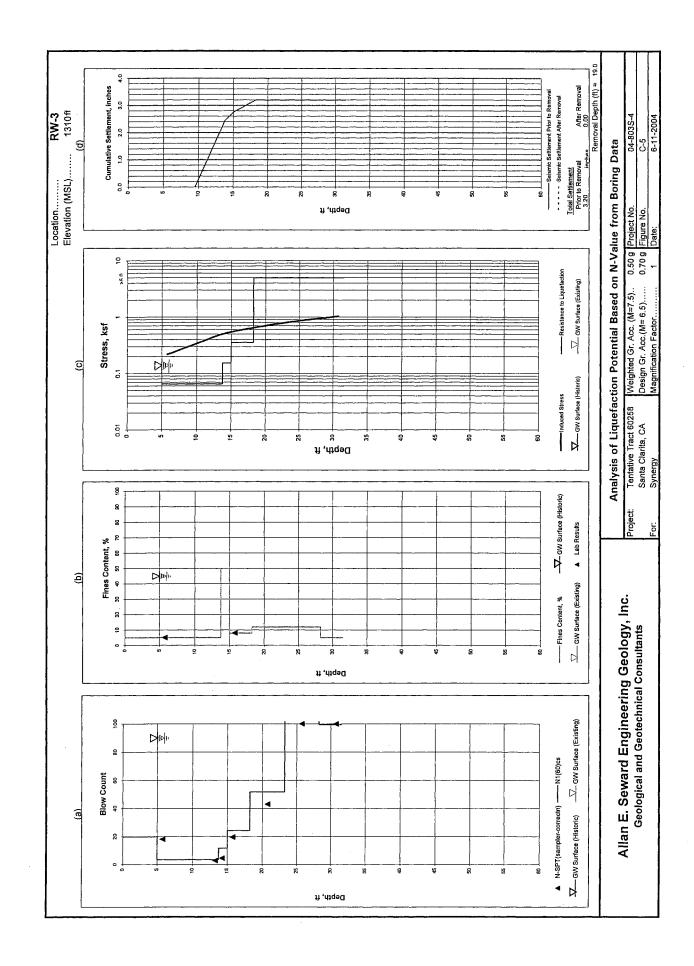
REFERENCES


- Bartlett, S.F., and Youd, T.L., "Empirical prediction of liquefaction induced lateral spread", Journal of Geotechnical Engineering, Vol. 121, No. 4, April 1995
- California Division of Mines and Geology, Special Publication 117, "Guidelines for Evaluating and Mitigating Seismic Hazards in California", adopted by the State on March 13, 1997.
- Douglas, B.J., and Olsen, R.S., "Soil classification using Electric Cone Penetrometer", ASCE Special Technical Publication, ST. Louis, Missouri, October, 1981.
- Douglas, B.J., Olsen, R.S., and Martin, G.R., "Evaluation of the Cone Penetrometer Test for use in SPT-Liquefaction Potential Assessment," ASCE Preprint Volume No. 81-544, St. Louis, Missouri, October 1981.
- Fear and McRoberts, "Reconsideration of initiation of liquefaction in sandy soils", ASCE Geotechnical Journal, March 1995.
- Housner, G.W., Chairman of Committee on Earthquake Engineering, Book, "Liquefaction of soils during earthquakes", p. 110-114, National Academy Press, 1985.
- Ishihara, K., "Soil Behaviour in Earthquake Geotechnics", Clarendon Press, Oxford, 1996.
- Ishihara, K., "Stability of natural deposits during earthquakes", Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, A.A. Balkema Publishers, Rotterdame, Netherlands, 1985
- Liao, S.S.C., and Whitman, R.V., "Overburden correction factors for SPT in sand", Journal of Geotechnical Engineering, Vol. 112, No. 3, March 1986.
- Pradel, D., "Procedure to evaluate earthquake-induced settlements in dry sandy soils," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 4, April 1998.
- Proprietary charts for correction of blow-count by sampler type to N-SPT
- Robertson, P.K., and Fear, C.E., "Soil liquefaction and its evaluation based on SPT and CPT" Liquefaction Workshop, University of Alberta, January 1996.
- Robertson, P.K., and Fear, C.E., "Liquefaction of sands and its evaluation", First International Conference and Earthquake Geotechnical Engineering, 1995.
- Robertson, P.K., and Campanella, R.G., "Guidelines for Geotechnical Design using the Cone Penetrometer Test and CPT with Pore Pressure Measurement", University of Alberta and University of British Columbia, 4th edition, 1989.
- Seed, H.B., "Design problems in soil liquefaction," Report No. UCB/EERC-86/02, February, 1986
- Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., "The influence of SPT procedures in soil liquefaction resistance evaluations", Earthquake Engineering Research Center Report No. 84/15, University of California, Berkeley, 1984.


Job No: 04-803S-4


REFERENCES


- Seed, H.B., Idriss, I.M., and Arango, I., "Evaluation of liquefaction potential using field performance data", Journal of Geotechnical Engineering, Vol. 109, No.3, March 1983.
- Seed, H.B. and Idriss, I.M., "Ground motions and soil liquefaction during earthquakes", 1982, Monograph, Earthquake Engineering Research Institute.
- Seed, H.B. and Idriss, I.M., "A simplified procedure for evaluating soil liquefaction potential", EERC 70-9, Nov. 1970.
- Tokimatsu, K., Seed, H.B., "Evaluation of settlements in sands due to earthquake shaking", Journal of Geotechnical Engineering, Vol. 113, No. 8, August, 1987.
- University of Southern California (USC), Southern California Earthquake Center, Workshop on "Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction in California", USC, Los Angeles, California, June 17, 1999.
- Youd, T.L. and Idriss, I.M., "Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils", Technical Report NCEER-97-0022, December, 1997.
- Youd, T. Leslie, Hanson, Corbett M. and Bartlett, Steven F. "Revised MLR Equations for Predicting Lateral Spread Displacement", Notes & Handout, ASCE Los Angeles Section Seminar, July, 1999.


Job No: 04-803S-4

Appendix D

Job No: 04-803S-4 Table C1

APPENDIX C

SUMMARY OF CYCLIC SETTLEMENT ANALYSES AND REMOVALS (BASED ON RW & HS DATA)

ANALYZED LOCATION	GROUND SURFACE ELEVATION (MSL)	DEPTH TO EXISTING GROUND WATER	DEPTH TO HISTORIC HIGH GROUND WATER	ESTIMATED TOTAL CYCLIC SETTLEMENT (PRIOR TO REMOVAL AND RECOMPACTION)	PROPOSED FILL HEIGHT	ESTIMATED REQUIRED REMOVAL DEPTH	ESTIMATED TOTAL CYCLIC SETTLEMENT (AFTER REMOVAL AND RECOMPACTION)	ESTIMATED DIFFERENTIAL CYCLIC SETTLEMENT' (AFTER REMOVAL AND RECOMPACTION)	ULTIMATE NON- LIQUEFIABLE CAP (REMOVAL AND NEW FILL INCLUDED)
	(FT)	(FT)	(FT)	(INCH)	(FT)	(FT)	(inch)	(INCH)	(FT)
HS-1	1375		5.0	0.00		5-10	0.00	-	-
HS-2	1410	-	5.0	0.21	80	5-10	0.00	0.00	90
RW-1	1290	27.0	5.0	3.87	52	34	0.00	0.00	79
RW-2	1300	27.0	5.0	1.57	105	36	0.64	0.43	141
RW-3	1310	6.0	5.0	3.20	95	19	0.00	0.00	114

a. Estimated total cyclic settlements based on seismic analysis.

b. Estimated removal depths are based on required (per Ishihara) upper non-liquefiable soil layers (including new fill), and/or cyclic settlements or adjacent borings or CPT blow count.

Based on CDMG Special Publication 117 and Los Angeles County-adopted Recommended Procedures for Implementation of CDMG Special Publication 117.

SEISMICITY

1.0 EVALUATION OF POTENTIAL SEISMIC HAZARDS

1.1 Ground Motion

1.1.1 Introduction

Ground motion is generated during an earthquake as two blocks of the earth's crust slip past each other. The intensity of ground motion at a specific site is controlled primarily by the magnitude of the earthquake and the distance from the epicenter and/or ground rupture area. Ground motion generally increases with increasing magnitude and is generally greatest near the epicenter and/or rupture area, and decreases (attenuates) with increasing distance. However, the ground motion measured at a given site is modified by a number of factors including focal depth, proximity to projected or actual fault rupture, fault mechanism, duration of shaking, local geologic structure, source direction of earthquake, underlying earth material characteristics, and topography. All of these factors make it difficult to accurately predict potential ground motions at a given site in the geologically and topographically complex Southern California area.

Current methods used to evaluate future potential ground motions are based on the review of historic earthquakes and statistical distributions of both rupture dimensions and ground motions generated during these earthquakes. Three primary procedures are currently in use to evaluate potential ground motions at a site:

- 1. Review of ground motions recorded during historic earthquakes
- 2. Deterministic seismic hazard analysis (DSHA)
- 3. Probabilistic seismic hazard analysis (PSHA)

Procedure number one involves the use of historically recorded earthquake magnitudes and ground accelerations to estimate accelerations, which have occurred at a given site during known earthquake events. Deterministic analysis (DSHA) utilizes maximum potential magnitude values for each significant fault to estimate maximum potential ground accelerations at a site without reference to a specific time frame. A probabilistic analysis (PSHA) evaluates potential earthquake magnitudes and accelerations based on historic earthquake data and interpreted slip rates for each

Job No: 04-803S-4

fault to estimate potential accelerations anticipated within a particular time frame (return period) of interest.

Review of Guidelines for Evaluating and Mitigating Seismic Hazards in California (CDCDMG, 1997) indicates that potential ground motion should be evaluated using simple prescribed parameter values derived from published State maps (Petersen, et al., 1996; SHMA Quadrangle Maps) or by site specific probabilistic or deterministic analyses where sites are in close proximity to seismic sources. In accordance with current State guidelines for geotechnical and geologic reports, we have evaluated potential ground motions at the site with a probabilistic procedure, utilizing the computer program FRISKSP by Thomas Blake and compared our estimate with the Seismic Hazard Maps for the Newhall Quadrangle and Mint Canyon Quadrangle. Historic ground motions at the site have been estimated with the computer program EQSEARCH.

1.1.2 Earthquake Magnitude

Earthquake **magnitude** is a quantitative measure of the strength of an earthquake or the strain energy released by it, as determined by seismographic or geologic observations. It does not vary with distance or the underlying earth material. This differs from **intensity**, which is a qualitative measure of the effects a given earthquake has on people, structures, loose objects, and the ground at a specific location. Intensity generally increases with increasing magnitude and in areas underlain by unconsolidated materials, and decreases with distance from the epicenter. **Figure D2** gives the 1956 version of the Modified Mercalli intensity scale and the approximate magnitude necessary to generate the effects.

Review of criteria presented in CDCDMG Special Publication 117 indicates that probabilistic ground motions should be estimated based on maximum moment magnitude earthquakes for each fault of interest. In this report we have utilized the default magnitudes contained in the CDMGSCF.DAT file provided with Version 4.00 of the FRISKSP Program by Thomas Blake. These magnitudes were derived primarily from CDMG Open-File Report 96-08 (Peterson et al., 1996) and are based on historic displacements per seismic event or the rupture area-to-magnitude relationships of Wells and Coppersmith (1994). The maximum magnitudes for the significant faults within 50 km of the site are presented in **Table D2** under the AMMAX descriptor for each fault.

Job No: 04-803S-4

1.1.3 Ground Acceleration

Ground motion is typically reported with respect to the acceleration of gravity in units of g. Maximum, peak amplitudes in two perpendicular horizontal directions and the vertical axis are typically recorded during historic earthquakes on accelerograms.

Review of Sections 1804.5 and 1629A of the 1998 California Building Code (based on the 1997 UBC) and Chapter 4 of the CDCDMG 1997 Guidelines, indicates that an acceleration with a 10% chance of exceedance in 50 years (design basis earthquake ground motion) should be utilized for the evaluation of liquefaction potential for standard structures. This roughly correlates to a 475 year return period. An acceleration with a 10% chance of exceedance in 100 years (upper bound or maximum capable earthquake ground motions) should be utilized for liquefaction assessments of school sites and other essential facilities (CDCDMG Note 48). This statistically corresponds to a return period of 1000 years.

Site specific evaluation of potential ground motions requires the use of an attenuation relationship based on the observed attenuation of ground motions during historic earthquakes to estimate how ground acceleration will dissipate with increasing distance from the earthquake source. Review of CDCDMG Open-File Report 96-08 and SCEC Implementation Guidelines (Martin and Lew, 1999) indicates that design ground accelerations can be based on the equally weighted average of accelerations from three acceptable attenuation relationships. This procedure has been followed in our probabilistic analysis.

It should be emphasized that the ground acceleration values presented in our report are based on simplified curves of fault rupture area to magnitude, and ground motion attenuation relationships which represent averages of highly variable data measured during historic earthquakes. Predicted accelerations should be considered rough estimates rather than precise facts and, therefore, ground accelerations at the subject site from future seismic events may exceed the predicted accelerations. Due to the dip-slip nature of most of the faults in Southern California, vertical accelerations may equal horizontal accelerations. Ground motions may originate from virtually any direction due to the presence of major faults in all directions from the site.

Job No: 04-803S-4

1.1.4 Seismic Analysis – Tentative Tract 60258

1.1.4.1 Site Conditions

Most of the subject site is elevated above the Santa Clara River and is underlain by Quaternary Terrace Deposits and Saugus Formation Bedrock. Alluvial deposits are present on site in the low-lying areas within the Santa Clara River drainage and its tributary canyons where proposed Newhall Ranch Road and the southern portion of Golden Valley Road alignments and a school site are proposed. The Terrace deposits typically consist of friable fine-to very coarse-grained sandstone and pebbly sandstone with cobbles and boulders. The bedrock generally consists of sandstones and pebbly sandstones with interbeds of reddish-brown silty sandstones and mudstones (see **Geologic/Geotechnical Map**). To the depths explored, alluvium is comprised of interbeds of granular soils and fine-grained soils, but granular soils predominate. The upper soils will be removed and recompacted. Therefore, it is reasonable to classify the site as S_D per the Uniform Building Code ("Stiff Soil Profile"). For our analysis, we used soil profile type S_D.

1.1.4.2 Maximum Historic Accelerations

In order to provide a rough estimate of maximum ground motions which have occurred at the site from known, historic earthquakes, a site specific analysis using the computer program EQSEARCH (Version 3.00) by Thomas F. Blake was completed. This program utilizes a data base file that contains data on approximately 6000 events greater than magnitude 4 which have occurred in California between 1800 and 2000. This data was extracted primarily from the CDMG computerized earthquake catalog, Townley and Allen (1939) and the U.S. Geological Survey's Earthquake Data Base System. The attenuation relationship of Boore et al. (1997) with a random horizontal component and Site Class D Soil Classification was used to estimate the dissipation of ground motion from the epicenter to the subject site.

Table D1 summarizes the input parameters and a listing of earthquakes of magnitude 5 or greater which have occurred within 100 miles of the site, and the estimated ground motions produced at the site from each event. The locations of historic earthquakes near the subject site are shown on **Figure D1**. The largest

Job No: 04-803S-4

historic acceleration indicated by EQSEARCH for the alluvium at the site is 0.33g from the 1971 San Fernando Earthquake. Review of the contour map of accelerations for bedrock and soil sites prepared by Stewart et al. (1994) indicates a site ground acceleration of approximately 0.48g during the Northridge Earthquake (Figure D3).

1.1.4.3 Probabilistic Seismic Hazard Analysis

In order to provide a site specific, probabilistic seismic hazard analysis for the proposed development, the computer program FRISKSP (Version 4.00) by Thomas F. Blake was utilized. This program evaluates potential ground motions which may statistically occur within a time frame (return period) of interest. For this investigation a return period of 475 years and 1000 years were analyzed. Potential ground motions include a standard deviation to account for variability in observed ground motion attenuation.

The peak ground acceleration with a 10% probability of exceedance in 50 years (design basis ground motion) was calculated to be **0.70g** for the alluvial portions of the site (See Problem #1 Table D2). The peak ground acceleration with a 10% probability of exceedance in 100 years (upper bound ground motion) was calculated to be **0.84g** for the alluvium on the school site portion of the site (See Problem #1 Table D2). These accelerations were determined by using an unweighted average of the three accelerations indicated by the attenuation relationships of Boore et al. (1997) for a Site Class D, Sadigh et al. (1997) for deep soil, and Campbell and Bozorgnia (1997) for alluvium (see Summary of Calculated Accelerations **Table D3**). The Seismic Hazard Zone Reports for the Newhall Quadrangle (Open-File Report 97-11) and the Mint Canyon Quadrangle (Open-File Report 98-09) indicates a peak ground acceleration with a 10 percent probability of exceedance in 50 years to be **0.66g** for the alluvial portion of the site.

The dominant fault controlling maximum potential ground accelerations at the site is the Santa Susana Fault, with secondary impacts from the, San Gabriel, Northridge (East Oak Ridge) and Sierra Madre (San Fernando) Faults per analysis with Boore et al. (1997) (see Table D2 for Summaries of Significant Faults). Site-fault distances for faults within 50 km of the site are summarized at the end of Table D2.

Job No: 04-803S-4

The FRISKSP program runs two problems for each attenuation relationship evaluated. The first evaluates potential accelerations, which may be generated within the return period of interest. The second problem normalizes potential accelerations to a 7.5 magnitude based on published empirical relationships because most liquefaction and settlement analyses are based on this standard magnitude. The acceleration is normalized to account for changes in duration for the same acceleration because larger, more distant earthquakes will produce ground motions with a longer duration (i.e. more cycles and more distress) than smaller, closer earthquakes. Where the design earthquake is smaller than a 7.5 magnitude, the normalized acceleration will be smaller than the design acceleration to account for the shorter duration of shaking from the design earthquake compared to the same acceleration from the larger 7.5 magnitude earthquake. The empirical relationship used for magnitude weighting in our analysis is from Youd and Idriss (1997). The average, magnitude-weighted acceleration was found to be 0.50g for the design basis earthquake and 0.60g for the upper bound earthquake (see Table D3).

1.1.5 Deaggregation of Fault Hazard

A probabilistic analysis evaluates a range of magnitudes from 5.0 to the maximum magnitude for each fault. However, the dominant magnitude which statistically generates the peak acceleration within a limited time period (e.g. 475 years) is typically less than the maximum magnitude for a given fault. We have, therefore, performed a deaggregation of fault hazard analysis with the PROBOUT Sub-Program of FRISKSP to evaluate what dominate magnitude-distance combination produces the design basis accelerations (DBA). We utilized the unweighted acceleration from Boore et al. (1997) of **0.84g** (DBA) for our deaggregation analyses. Review of the magnitude-distance contributions to hazard indicates that the dominant magnitude which generates the DBA acceleration is 6.5 as shown graphically in **Figure D4**.

1.1.6 Summary

The peak design basis ground acceleration value used in our liquefaction analysis was **0.70g** from a 6.5 magnitude earthquake on the Santa Susana Fault based on our probabilistic evaluation of the site. The peak upper bound acceleration used to assess the proposed school site was **0.84g** from a 6.5 magnitude earthquake.

Although research on earthquakes during the last forty years has greatly enhanced the level of understanding of earthquake faulting in California, the record is much too short to constrain behavior of all faults in Southern California and the attenuation characteristics of all areas relative to each future potential earthquakes. Predicted accelerations should, therefore, be considered **rough estimates** rather than precise facts and ground motions from future earthquakes may exceed the predicted accelerations. Neither the **Time**, **Location**, **nor Magnitude** of an earthquake can be accurately predicted at this time.

The proposed development is located in Southern California, which is in a geologically and seismically active region where large magnitude, potentially destructive earthquakes are common. Therefore, it is reasonable to assume that moderate or large magnitude earthquakes will affect the site during the life of a given structure. The current standards for construction provided in the California Building Code based on the 1997 Uniform Building Code are designed to safeguard against major failures and loss of life, but are not intended to limit damage, maintain functions or provide for easy repair. Per SEAOC, conformance to these recommendations does not constitute any kind of guarantee or assurance that significant structural damage will not occur in the event of a maximum level of earthquake ground motion. However, it is reasonable to expect that a well-planned and constructed structure will not collapse in a major earthquake and that protection of life is reasonably provided, but not with complete assurance.

1.2 Ground Failure

Ground failure is a general term describing seismically induced, secondary permanent ground deformation caused by strong ground motion. This includes liquefaction, lateral spreading, seismic settlement of poorly consolidated materials (dynamic densification), differential materials response, slope failures, sympathetic movement on weak bedding planes or non-causative faults, shattered ridge effects and ground lurching.

Seismic hazard maps for the Newhall Quadrangle (dated 2/1/98) and the Mint Canyon Quadrangle (3/25/99) indicates that the alluvial portions of Tentative Tract 60258 are in designated zones of required investigation to evaluate the potential for liquefaction and lateral spreading. The potential for liquefaction and seismic settlement has been evaluated in **Appendix C** of this report. Recommended measures to mitigate potential liquefaction and seismic settlements are provided in the earthworks recommendations and

Job No: 04-803S-4

foundation and settlement considerations of this report. Historic high ground water levels were assumed at a conservative depth of 5 feet below existing topography based on historical water well records available at the County of Los Angeles.

Differential materials response refers to the different responses various materials display when subjected to seismic waves. Where materials with different densities or strengths are in contact, differential response to the seismic energy may cause distress along the contact. The combination of dynamic compaction and differential settlement along with differential materials response is a source of future potential hazard along cut/fill and bedrock/alluvium contacts. It is, therefore, recommended that **lots** underlain by transitions between different material types (ex. bedrock to fill, bedrock to alluvium, etc.) be **over-excavated 5 feet** to minimize potential adverse impacts.

Earthquake-induced slope failures include activation and reactivation of landslides, rock falls, debris flows and surficial failures. Review of the SHMA maps for the Newhall and Mint Canyon Quadrangles indicate that much of the slope areas on the site are within designated areas requiring investigation to evaluate potential earthquake-induced landslides. Landslides have been mapped by this firm easterly of the proposed development above the proposed walkway/trail. Existing landslides which could potentially impact the proposed development have been evaluated and appropriate mitigation recommended as presented in this report. The stability of natural and constructed slopes which could potentially affect the proposed development has been evaluated and appropriate mitigation recommended. The potential for earthquake-induced slope failures to adversely impact the proposed development is considered negligible, provided that our Recommendations and those of the Supervising Civil Engineer are incorporated into the proposed design and implemented during construction.

The specific location of future potential sympathetic movement along weak planes such as inclined clay beds cannot be reliably predicted on a site specific basis at this time. Over-excavation of clay-rich bedding planes of the Saugus Formation and subsequent placement of a certified fill cap has been recommended to mitigate potential hazards from expansive material. This certified fill will also reduce potential hazards from potential secondary seismogenic movement along bedding planes.

Development is predominately located along the mesa areas of the site and is generally not proposed on ridgelines, therefore, potential hazards from shattered ridge affects are considered negligible.

Job No: 04-803S-4

Job No: 04-803S-4 Page D9

APPENDIX D

The following attachments complete this Appendix

Summary Table of EQSEARCH Parameters and Output	Table D1
Summary Table of FRISKSP Parameters and Output (.out File)	
Boore et al. (1997) + Portions of Sadigh et al. (1997) & Campbell (1997)	Table D2
Summary of Calculated Accelerations	Table D3
Fault and Earthquake Epicenter Location Map	Figure D1
Modified Mercalli Scale, 1956 Version	Figure D2
Contours of Maximum Acceleration, Northridge Earthquake	
(Stewart et al., 1994)	Figure D3
Excel Histograms of Magnitude - Distance Contributions to Hazard	Figure D4

ESTIMATION OF
PEAK ACCELERATION FROM
CALIFORNIA EARTHQUAKE CATALOGS

JOB NUMBER: 04-803S-4

DATE: 01-14-2004

Job No: 04-803S-4

Table D1.1

JOB NAME: VTTM 60258 - SYNERGY

EARTHQUAKE-CATALOG-FILE NAME: ALLQUAKE.DAT

MAGNITUDE RANGE:

MINIMUM MAGNITUDE: 5.00 MAXIMUM MAGNITUDE: 9.00

SITE COORDINATES:

SITE LATITUDE: 34.4314 SITE LONGITUDE: 118.4967

SEARCH DATES:

START DATE: 1800 END DATE: 2000

SEARCH RADIUS:

100.0 mi 160.9 km

ATTENUATION RELATION: 3) Boore et al. (1997) Horiz. - NEHRP D (250)

UNCERTAINTY (M=Median, S=Sigma): M Number of Sigmas: 0.0

ASSUMED SOURCE TYPE: DS [SS=Strike-slip, DS=Reverse-slip, BT=Blind-thrust]

SCOND: 0 Depth Source: A

Basement Depth: 5.00 km Campbell SSR: Campbell SHR:

COMPUTE PEAK HORIZONTAL ACCELERATION

MINIMUM DEPTH VALUE (km): 0.0

Job No: 04-803S-4 Table D1.2

APPENDIX D

EARTHQUAKE SEARCH RESULTS

	1	l	I	TIME		1	SITE	SITE	APPR	OX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DIST	ANCE
CODE	NORTH	WEST	1	H M Sec	(km)	MAG.	q	INT.	mi	[km]
	-++-	+		+	-+	·	+ - +	-		
DMG	34.4110	118.4010	02/09/1971	14 1 8.0	8.0	5.80	0.241	IX	5.6(9.1)
DMG	34.4110	118.4010	02/09/1971	14 244.0	8.0	5.80	0.241	IX	5.6(9.1)
DMG	34.4110	118.4010	02/09/1971	141028.0	8.0	5.30		VIII	5.6(9.1)
DMG	34.4110	1118.4010	02/09/1971	14 041.8	8.4	6.40	0.331	IX	5.6(9.1)
GSP	34.3780	118.6180	01/19/1994	211144.9	11.0	5.10	0.136	VIII	7.8(12.6)
DMG	34.3080	118.4540	02/09/1971	144346.7	6.2	5.201	0.132	VIII	8.9(14.3)
GSB	34.3010	118.5650	01/17/1994	204602.4	9.01	5.20	0.123	VII	9.8(15.8)
GSP	34.3050	118.5790	01/29/1994	112036.0	1.0	5.10	0.116	VII	9.9(15.9)
GSP	34.3940	118.6690	06/26/1995	084028.9	13.0	5.00	0.108	VII	10.1(16.3)
DMG	134.3000	118.6000	04/04/1893	1940 0.0	0.0	6.001	0.176	VIII	10.8(17.4)
GSP	34.3690	118.6720	04/26/1997	103730.7	16.0	5.10	0.109	VII		17.5)
GSP			01/18/1994			5.201				19.4)
GSB	34.3790	1118.7110	01/19/1994	210928.6	14.0	5.50	0.120	VII	12.7(20.5)
GSP	134.3260	1118.6980	01/17/1994	233330.7				! VIII	13.6(21.9)
GSP			03/20/1994				0.101		-	22.3)
GSP	•	-	01/17/1994			6.70				24.5)
DMG	•		08/23/1952			5.001			18.0(
MGI			07/16/1920			5.00		VI		
MGI			11/19/1918				0.049	VI	29.8(
DMG	•		08/04/1927					VI	-	•
			06/28/1991			5.40			,	-
			11/27/1852					VIII		
			09/03/1905					VI		
	•		07/11/1855			6.30		VII		
			03/26/1860					VI		
			09/23/1827					VI		
			01/10/1856			5.00				53.0)
	•		10/04/1987					VI	33.6(
			10/23/1916			5.50		VI	34.1(
DMG			08/31/1930					VI		
			10/01/1987					VI	•	•
	•		01/01/1979	'		5.00			35.3(
PAS			01/19/1989	· ·		5.001				58.2)
DMG	•		08/28/1889			•		VI	•	60.5)
			06/10/1988			5.40				
			09/21/1941			5.20				
	•		10/23/1916			6.00				
			02/21/1973			5.90				
			12/25/1903			5.00			41.1(
			08/01/1952			5.10			•	
	•		12/14/1912			5.70				
TOT	124.00001	**>.00001	14/13/17/14	0 0 0.01	0.01	5.70	0.000	1 1	37.3/	00.0)

	1 1	SITE SITE	APPROX.
FILE LAT. LONG. DATE (UTC)	DEPTH QUAKE	ACC. MM	DISTANCE
CODE NORTH WEST H M Sec	(km) MAG.	g INT.	mi [km]
tttttt	++	++	41 44 66 6
DMG 34.0000 119.0000 09/24/1827 4 0 0.0	, .	0.108 VII	
T-A 34.9200 118.9200 01/20/1857 0 0 0.0	0.0 5.00		41.4 (66.7)
T-A 34.9200 118.9200 05/23/1857 0 0 0.0	0.0 5.00		41.4 (66.7)
DMG 34.9500 118.8670 07/21/1952 121936.0	0.0 5.30		41.5 (66.8)
DMG 33.8500 118.2670 03/11/1933 1425 0.0	0.0 5.00		42.2 (68.0)
DMG 34.8000 119.1000 09/05/1883 1230 0.0 DMG 35.0000 118.8330 07/23/1952 181351.0	0.0 6.00	, ,	42.7 (68.7)
	0.0 5.20		43.6(70.2)
DMG 35.0000 118.8330 07/23/1952 75319.0	0.0 5.40		•
DMG 34.9320 118.9760 03/01/1963 02557.9	13.9 5.00		, ,
DMG 34.9410 118.9870 11/15/1961 53855.5 DMG 33.7830 118.2500 11/14/1941 84136.3	10.7 5.00		, ,
	0.0 5.40 0.0 5.10		46.9 (75.5) 47.0 (75.7)
	•	·	48.4 (77.9)
DMG [35.0000 119.0000 02/16/1919 1557 0.0 DMG [35.0000 119.0000 07/21/1952 12 531.0		0.033 V 0.070 VI	
DMG 35.0000 119.0170 01/12/1954 233349.0	0.0 5.90		
DMG 35.0000 119.0170 0171271954 235349.0	0.0 3.30		
DMG 33.7830 118.1330 10/02/1933 91017.6	0.0 5.40		
DMG 35.0000 119.0330 07/21/1952 12 2 0.0	0.0 5.40		49.7(79.9)
GSP 34.1400 117.7000 02/28/1990 234336.6	5.0 5.20		49.7(80.0)
DMG 35.1500 118.6330 01/27/1954 141948.0	0.0 5.00		
DMG 35.1330 118.7670 07/21/1952 194122.0	0.0 5.50		
DMG 34.3000 117.6000 07/30/1894 512 0.0	0.0 6.00		
DMG 35.1830 118.6500 07/21/1952 151358.0	0.0 5.10		
DMG 33.7500 118.0830 03/11/1933 323 0.0	0.0 5.00		
DMG 33.7500 118.0830 03/13/1933 131828.0		0.037 V	
DMG 33.7500 118.0830 03/11/1933 910 0.0	0.0 5.10		
DMG 33.7500 118.0830 03/11/1933 230 0.0	0.0 5.10		52.7(84.7)
DMG 33.7500 118.0830 03/11/1933 2 9 0.0	0.0 5.00		52.7(84.7)
DMG 35.2330 118.5330 07/21/1952 174244.0	0.0 5.10		55.4(89.1)
DMG 34.2700 117.5400 09/12/1970 143053.0	8.0 5.40		55.7(89.6)
DMG 33.7000 118.0670 03/11/1933 51022.0	0.0 5.10		56.2(90.4)
DMG 33.7000 118.0670 03/11/1933 85457.0	0.0 5.10	0.031 V	56.2(90.4)
DMG 34.1000 119.4000 05/19/1893 035 0.0	0.0 5.50	0.039 V	56.4(90.7)
DMG 35.2170 118.8170 07/23/1952 1317 5.0	0.0 5.70	0.043 VI	57.2(92.0)
DMG 34.5000 119.5000 08/05/1930 1125 0.0	0.0 5.00		
DMG 34.5000 119.5000 06/29/1926 2321 0.0	0.01 5.501	0.038 V	57.3(92.2)
DMG 34.3000 117.5000 07/22/1899 2032 0.0	0.01 6.501	0.065 VI	57.5(92.6)
DMG 33.6830 118.0500 03/11/1933 658 3.0	0.0 5.50		57.6(92.8)
GSP 35.2100 118.0660 07/11/1992 181416.2	10.0 5.70		59.0(95.0)
GSP 35.1490 119.1040 05/28/1993 044740.6	21.0 5.20		60.3(97.1)
DMG 35.3110 118.4990 07/25/1952 1313 8.2	2.8 5.00		
DMG 35.3150 118.5160 07/25/1952 194323.7	11.2 5.70	0.040 V	61.0(98.2)
DMG 35.3170 118.4940 07/25/1952 19 944.6	5.5 5.70	0.040 V	61.1(98.4)
DMG 34.3670 119.5830 07/01/1941 75054.8	0.0 5.90		62.0(99.8)

Job No: 04-803S-4

Table D1.3

Job No: 04-803S-4 Table D1.4

APPENDIX D

			TIME		· 	SITE	 SITE	APPROX.
FILE LAT.	LONG.	DATE		DEPTH	ו אאמוות	ACC.	MM	
CODE! NORTH		DATE	H M Sec		MAG.		INT.	
t	, MEDI	' +		++		g ++	, 1111.	urr (vm)
DMG 35.3000	118.8000	112/23/1905	12223 0.0	0.01	5.00	0.028	V	62.4(100.4)
DMG 35.3330	118.6000	107/31/1952	12 9 9.0	0.01	5.80	0.042	VI	62.5(100.6)
DMG 33.6170	118.0170	03/14/1933	19 150.0	0.0	5.10	0.029	V	62.6(100.7)
PAS 33.6710	1119.1110	09/04/1981	[155050.3]	5.0	5.301	0.032	V	63.2(101.7)
DMG 33.9860	1119.4750	108/06/1973	232917.0	16.9	5.00	0.027	V	63.8(102.6)
DMG 33.6170	117.9670	103/11/1933	154 7.8	0.0	6.30	0.054	VI	63.9(102.8)
MGI 34.0000	1117.5000	12/16/1858	10 0 0.0	0.01	7.00	0.077	VII	64.2(103.4)
DMG 34.2000	117.4000	[07/22/1899	046 0.01	0.01	5.50	0.035	V	64.5(103.9)
DMG 34.0000	119.5000	02/18/1926	1818 0.0	0.01	5.00	0.027	V	64.6(103.9)
DMG 35.3670	118.5830	07/23/1952	03832.0	0.01	6.10	0.048	VI	64.8(104.2)
DMG 35.3670	118.5830	07/23/1952	31923.0	0.0	5.00	0.027	V	64.8(104.2)
DMG 33.5750	117.9830	03/11/1933	518 4.0	0.01	5.20	0.029	V	66.0(106.3)
DMG 35.3330	118.9170	08/22/1952	224124.0	0.01	5.801	0.040	V	66.6(107.2)
T-A 34.5000	119.6700	06/01/1893	[12 0 0.0]	0.01	5.00	0.026	V	67.0(107.7)
MGI 33.8000	117.6000	04/22/1918	[2115 0.0]	0.01	5.00	0.026	V	67.3(108.3)
MGI 34.4000	119.7000	03/25/1806	1 8 0 0.01	0.01	5.00	0.026	V	68.6(110.3)
PAS 34.3470	119.6960	08/13/1978	225453.4	12.8	5.10	0.027	V	68.6(110.4)
DMG 35.3830	118.8500	07/29/1952	7 347.0	0.01	6.10	0.046	VI	68.7(110.5)
DMG 35.4000	1118.8170	107/29/1952	8 146.0	0.01	5.10	0.027	V	69.3(111.5)
MGI 34.1000	117.3000	07/15/1905	[2041 0.0]	0.0	5.30	0.029	V	72.0(115.9)
DMG 34.1180	119.7020	107/05/1968	04517.2	5.9	5.20	0.027	1 V I	72.1(116.0)
DMG 35.5000	118.7000	01/06/1905	1430 0.0	0.01	5.00	0.024	V	74.7 (120.2)
MGI 34.3000	119.8000	07/03/1925	1638 0.0	0.01	5.30	0.028	V	74.8(120.4)
MGI 34.3000	119.8000	07/03/1925	1821 0.0	0.01	5.30	0.028	V	74.8(120.4)
DMG 34.3000	119.8000	06/29/1925	144216.0	0.0	6.25	0.046	VI	74.8(120.4)
T-A 34.4200	119.8200	100/00/1862	0 0 0.01	0.0	5.701	0.034	V	75.4(121.3)
DMG 33.6990	1117.5110	05/31/1938	83455.4	10.0	5.50	0.031	V	75.7(121.9)
DMG 34.2000	119.8000	12/21/1812	119 0 0.0	0.01	7.00	0.068	VI	76.0(122.3)
DMG 34.0000	117.2500	07/23/1923	73026.0	0.01	6.25	0.045	VI	77.2(124.2)
DMG 33.7000	117.4000	04/11/1910	757 0.0	0.01	5.00	0.023	IV	80.5(129.6)
DMG 33.7000	117.4000	05/13/1910	620 0.0	0.0	5.00	0.023	IV	80.5(129.6)
DMG 33.7000	117.4000	05/15/1910	1547 0.0	0.01	6.001	0.038	V	80.5(129.6)
DMG 34.2000	117.1000	09/20/1907	154 0.0	0.01	6.001	0.038	V	81.2(130.7)
DMG 35.6000	118.8000	06/30/1926	1331 0.0	0.01	5.001	0.022	IV	82.5(132.7)
DMG 33.9000	117.2000	12/19/1880	0 0 0.01	0.0	6.00	0.037	V	82.7(133.0)
DMG 34.2670	116.9670	08/29/1943	34513.0	0.0	5.50	0.027	V	87.9(141.5)
DMG 33.2910	119.1930	10/24/1969	82912.1	10.0	5.10	0.022	IV	88.3(142.1)
GSP 34.3400	116.9000	11/27/1992	160057.5	1.0	5.30	0.024	. V	91.2(146.8)
GSP 34.3690	116.8970	12/04/1992	020857.5	3.0	5.30	0.024	V	91.2(146.8)
DMG 34.1800	116.9200	01/16/1930	034 3.6	0.01	5.10	0.022	IV	91.6(147.4)
DMG 34.1800	116.9200	01/16/1930	02433.91	0.01	5.20	0.023	IV	91.6(147.4)
DMG 34.0000	120.0170	04/01/1945	234342.0	0.0	5.40	0.025	V	91.8(147.7)
DMG 35.7150	118.0740	03/15/1946	14 035.4	0.01	5.30	0.024	IV	91.8(147.7)
DMG 35.7250	118.0550	03/15/1946	134935.9	22.0	6.301	0.040	V	92.7(149.2)
DMG 35.7140	117.9770	03/15/1946	191853.6	0.01	5.40	0.025	V	93.3(150.1)

| TIME | | | SITE | SITE | APPROX. į l - 1 FILE | LAT. | LONG. | DATE | (UTC) | DEPTH | QUAKE | ACC. | MM | DISTANCE CODE | NORTH | WEST | | H M Sec | (km) | MAG. | g | INT. | mi [km] ____+__ DMG |35.7450|118.0390|03/16/1946| 94617.9| 0.0| 5.10| 0.021 | IV | 94.3(151.8) GSP |34.1950|116.8620|08/17/1992|204152.1| 11.0| 5.30| 0.023 | IV | 94.6(152.3) DMG |35.7510|118.0290|03/15/1946|215433.4| 0.0| 5.20| 0.022 | IV | 94.9(152.7) DMG |35.3000|119.8000|01/09/1857|16 0 0.0| 0.0| 7.90| 0.091 | VII| 95.1(153.1) GSP |34.1630|116.8550|06/28/1992|144321.0| 6.0| 5.30| 0.023 | IV | 95.5(153.6) GSP |34.2390|116.8370|07/09/1992|014357.6| 0.0| 5.30| 0.023 | IV | 95.6(153.8) DMG |35.7530|117.9860|03/15/1946|1321 0.9| 0.0| 5.20| 0.022 | IV | 95.7(154.0) DMG |33.8000|117.0000|12/25/1899|1225 0.0| 0.0| 6.40| 0.041 | V | 96.0(154.5) DMG |35.7780|118.0490|01/28/1961| 81246.2| 5.5| 5.30| 0.023 | IV | 96.4(155.1) GSN |34.2030|116.8270|06/28/1992|150530.7| 5.0| 6.70| 0.048 | VI | 96.5(155.3) DMG |35.7470|117.9080|03/18/1946|155042.6| 4.4| 5.30| 0.023 | IV | 96.7(155.7) DMG |33.2670|119.4500|11/18/1947|2159 3.0| 0.0| 5.00| 0.019 | IV | 97.2(156.4) DMG |33.7500|117.0000|06/06/1918|2232 0.0| 0.0| 5.00| 0.019 | IV | 97.7(157.2) DMG |33.7500|117.0000|04/21/1918|223225.0| 0.0| 6.80| 0.050 | VI | 97.7(157.2) DMG |34.1000|116.8000|10/24/1935|1448 7.6| 0.0| 5.10| 0.020 | IV | 99.5(160.1) DMG |33.9500|116.8500|09/28/1946| 719 9.0| 0.0| 5.00| 0.019 | IV | 99.7(160.5) DMG |35.6310|117.5130|09/17/1938|1423 4.1| -2.0| 5.00| 0.019 | IV | 99.8(160.5) **************

-END OF SEARCH- 148 EARTHQUAKES FOUND WITHIN THE SPECIFIED SEARCH AREA.

TIME PERIOD OF SEARCH: 1800 TO 2000

LENGTH OF SEARCH TIME: 201 years

THE EARTHQUAKE CLOSEST TO THE SITE IS ABOUT 5.6 MILES (9.1 km) AWAY.

LARGEST EARTHQUAKE MAGNITUDE FOUND IN THE SEARCH RADIUS: 7.9

LARGEST EARTHQUAKE SITE ACCELERATION FROM THIS SEARCH: 0.331 q

COEFFICIENTS FOR GUTENBERG & RICHTER RECURRENCE RELATION:

a-value= 1.519 b-value= 0.377

beta-value= 0.868

Job No: 04-803S-4

Table D1.5

Job No: 04-803S-4 Table D1.6

APPENDIX D

TABLE OF MAGNITUDES AND EXCEEDANCES:

Earthquake	1	Number of Times	l	Cumulative
Magnitude	1	Exceeded	-	No. / Year
	+-		+	
4.0	1	148	1	0.73632
4.5	1	148	İ	0.73632
5.0	1	148	1	0.73632
5.5	ŀ	54	1	0.26866
6.0	1	28	1	0.13930
6.5	1	11	١	0.05473
7.0	1	7	1	0.03483
7 5	1	2	١	0 00995

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

SUMMARY TABLE OF FRISKSP PARAMETERS AND OUTPUT

* FRISKSP - IBM-PC VERSION *

* Modified from *FRISK* (McGuire 1978) *

* To Perform Probabilistic Barthquake *

* Hazard Analyses Using Multiple Forms *

* of Ground-Motion-Attenuation Relations *

* Modifications by: Thomas F. Blake *

* VERSION 4.00
* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSION 4.00 *

* VERSIO

ANALYSIS PERFORMED FOR Synergy

JOB NO.: 04-8035-4

DATE: 1/15/04

DESCRIPTION: SUMMARY OF FRISKSP.OUT FILES FOR BOORE ET AL. (1997), SADIGH ET AL. (1997) AND CAMPBELL & BOZORGNIA (1997)

Note: Binary File Will Be Generated Only For First Attenuation Problem and First Site.

IPR_FILE
0
IPLOT
0

SITE CONDITION 0.00

BASEMENT DEPTH (km) 5.00 RHGA FACTOR RHGA DIST (km)

Allan F Seward Fnoineering Geology, Inc.

Geology and Geotechnology

APPENDIX Ď

rCD

NATT 6

NPROB 2

NFLT NSITE

0.000

1.000

Synergy, A Land & Development Company June 11, 2004

0.15270 0.10000 0.0780 0.1780	Boore et al. (1997) ATT	1997)	٣	5	נ	'n	5	ä	و		:	21.5	5	5
Colore C	. 0	0.5270	0.0000	-0.7780		336.0000	5.5700	250.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000
Color Colo	ι	C16	C17	C18	C19	C20	C21	C22	C23	PER	DSMIN	SIGA	IRELAF	ICHK
Color Colo	000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.5200	35	0
-0.3710 1396.0000 5.5700 250.0000 0.0	ij	CZ	8	C4	CS	90	CJ	80	65	C10	C11	C12	C13	C14
C19	170	0.5270	0.0000	-0.7780	-0.3710 1	1396.0000	5.5700	250,0000	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.000.0
Color Colo	15	C16	C17	C18	C19	C20	C21	C22	C23	PER	DSMIN	SIGA	IRELAF	ICHK
Color Colo	000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.5200	35	0
-0.3710 1396.0000 5.5700 250.0000 0.0	CJ	C2	S	C4	CS		G	C8	C3	C10	C11	C12	C13	C14
C19	3130	0.5270	0.0000	-0.7780	-0.3710 1	1396.0000	5.5700	250.0000	0.000.0	0.000.0	0.000	0.0000	0.000.0	0.000.0
C C C C C C C C C C	C15	C16	C17	C18	C19		C21	C22	C23	PER	DSMIN	SIGA	IRELAF	ICHK
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0000	0.0000	0.000	0.0000	0.0000		0.000	0.000.0	0.000.0	0.000.0	000000	0.5200	35	0
-0.3710 1396.0000 5.5700 250.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	CJ	22	C3	C4	CS		C2	80	65	C10	C11	C12	C13	C14
C19 C20 C21 C22 C23 PER DSMIN SIGA IRELAF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5200 35 -0.3710 1396.0000 5.5700 250.0000 0.0000 0.0000 0.0000 0.0000 C19 C20 C21 C22 C23 PER DSMIN SIGA IRELAF 0.0000 0.0000 0.0000 0.0000 0.0000 0.5200 35 -0.3710 1396.0000 5.5700 250.0000 0.0000 0.0000 0.5200 35 -0.3710 1396.0000 5.5700 250.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5200 35 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.5200 35 0.0000 0.500 0.0000	1170	0.5270	0.0000	-0.7780	-0.3710 1	1396,0000	5.5700	250.0000	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.000.0
C	C15	C16	C17	Cl8	C19		C21	C22	C23	PER	DSMIN	SIGA	IRELAF	ICHK
-0.3710 1396.0000 5.5700 250.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0000	0000.0	0.000	0.0000	0.0000		0.000.0	0.000.0	0.0000	0.000	0.000.0	0.5200	35	0
-0.3710 1396.0000 5.5700 256.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	C1	S	83	C4	CS	90	C2	80 C8	60	C10	C11	C12	C13	C14
C19 C20 C21 C22 C23 PER DSMIN SIGA IRELAF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5200 35 C5 C6 C7 C8 C9 C10 C11 C12 C13 -0.3710 1396.0000 5.5700 250.0000 0.0000 0.0000 0.0000 0.0000 C19 C20 C21 C22 C23 PER DSMIN SIGA IRELAF 0.0000 0.0000 0.0000 0.0000 0.0000 0.5200 35	1170	0.5270	0.0000	-0.7780	-0.3710 1	1396.0000	5.5700	250,0000	0000.0	0.000.0	0.0000	0.000	0.000.0	0.000
C5 C6 C7 C8 C9 C10 C11 C12 C13 C13 C20 C21 C23 PER DSMIN SIGA IRELAF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 35	215	C16	C17	C18	C19	C20	C21	C22	C23	PER	DSMIN	SIGA	IRELAF	ICHK
-0.3710 1396.0000 5.5700 250.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000.0	0.5200	35	0
-0.3710 1396.0000 5.5700 250.0000 0.5200 35 00 0.500 0.500 0.700 0.800 0.800 0.900 1.000	ij	C3	ខ	C4	CS	90	C7	SS C8	60	C10	C11	C12	C13	C14
C19 C20 C21 C22 C23 PER DSMIN SIGA IRELAF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5200 35 00 0.500 0.600 0.700 0.800 0.900 1.000	1170	0.5270	0.000	-0.7780	-0.3710 1	1396.0000	5.5700	250.0000	0000.0	0.000.0	0.000	0.000	000000	0.000.0
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5200 35	215	C16	C17	C18	C19	C20	C21	C22	C23	PER	DSMIN	SIGA	IRELAF	ICHK
00 0.500 0.600 0.700 0.800 0.900 00 1.500	0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000.0	0.5200	35	0
00 0.500 0.600 0.700 0.800 0.900 00 1.500	DATA:													
1.200 1.300 1.400	AL (1	997) NEHRP 0.100	D (250)1	AMPLITUDES:	00				0.900	1.000				
						00								

Synergy, A Land & Development Company June 11, 2004

Job No: 04-803S-4 Table D2.3

							Ü				_				_				0				_			•	_
						C13	0.000.0	IRELAF	25	C13	0.0000	IRELAF	25	C13	0.000.0	IRELAF	25	C13	0.000.0	IRELAF	25	C13	0.000.0	IRELAF	25	C13	0.000
						C12	0.000.0	SIGA	1.0000	C12	0.0000	SIGA	1.0000	C12	0.000.0	SIGA	1.0000	C12	0.000.0	SIGA	1.0000	C12	0.0000	SIGA	1.0000	C12	0.000
						C11	0.000.0	DSMIN	0.0000	C11	0.000	DSMIN	000000	C11	0.000.0	DSMIN	0.000.0	C11	0.000.0	DSMIN	0.000.0	C11	0.0000	DSMIN	0.0000	C11	0.000
	1.000					C10	0.0000	PER	0.0000	C10	0.0000	PER	0.000.0	C10	0.000.0	PER	0.000.0	C10	0.000.0	PER	0000.0	C10	0.000.0	PER	0.000.0	C10	0.0000
	0.900					60	0.1600	C23	0.0000	60	0.1600	C23	0.0000	60	0.1600	C23	0.0000	6 5	0.1600	C23	0.0000	60	0.1600	C23	0.0000	60 6	0.1600
	0.800					C8	1.5200	C22	0.0000	83	1.5200	C22	0.0000	82	1.5200	C22	0.0000	80	1.5200	C22	0.000.0	85	1.5200	C22	0.000.0	80 8	1.5200
00.00	0.700	7.50				C.7	0.0000	C21	0.0000	C2	0.0000	C21	0.000.0	C3	0.000	C21	0.000.0	C2	0.0000	C21	0.000.0	CJ	0.0000	C21	0000.0	C7	0.000.0
MWF MAGNITUDE:	009.0 0	MWF MAGNITUDE:	00			95	0.000.0	C20	0.0000	G6	0.000.0	C20	0.000.0	92	0000.0	C20	0.000.0	92	0.0000	C20	0.000.0	G6	0.000	C20	0.000.0	CG	0.000.0
0 MWF	00 0.500	2 MWF	05 0.001000			CS	0.000.0	C19	0.0000	CS	0.0000	C19	0.000.0	CS	0.0000	C19	0.000.0	CS	0.000.0	C19	0.000.0	CS	0.0000	C19	0000.0	CS	0.000.0
MWF:	2 AMPLITUDES: 0.300 0.400 1.300 1.400	MWF:	00 0.002105			C4	0.000.0	C18	0.000.0	C4	0.000.0	C18	0.000.0	C4	0.000.0	C18	0.000.0	C4	0.000.0	C18	0.000.0	C4	0.000.0	C18	0.000.0	C4	0.000.0
FACTORS:	P D (250)2 AM 0.200 0.3 1.200 1.3	FACTORS:	0005000			ឡ	1.7000	C17	0.000.0	ឡ	1.7000	C17	0.000.0	S	1.7000	C17	0.0000	C3	1.7000	C17	0.0000	83	1.7000	C17	0.000.0	C3	1.7000
MAGNITUDE WEIGHTING FACTORS:	0.100 0	MAGNITUDE WEIGHTING FACTORS	D: 00 0.010000	ES: 7 34.4314	(1997)	CZ	1.0000	C16	0000.0	CS	1.0000	C16	000000	C2	1.0000	C16	000000	C 2	1.0000	C16	0.000.0	C2	1.0000	C16	0000.0	C2	1.0000
MAGNITUDE	BOORE ET AL(1997) NEHRP D (250) 15 0.100 0.200 1.100 1.200	MAGNITUDE	RISKS SPECIFIED: 5 0.013900	SITE COORDINATES: 1 -118.4967	SADIGH ET AL. (CJ	-2.1700	C15	0.0000	CJ	-1.9200	C15	0.000.0	IJ	-2.1700	CIS	0.0000	IJ	-1.9200	C15	0.0000	C	-1.9200	C15	0.0000	CI	-1.9200
	BOOF		RISK 5	SITE	SADIG	ATT	1	ATT	н	ATT	73	ATT	73	ALT	٣	ATT	e	ATT	4	ALT	4	ATT	Ŋ	ATT	S	ATT	9

C14 0.0000 ICHK 0

C14 0.0000 ICHK 0

C14 0.0000 ICHK 0 C14 0.0000 ICHK C14 0.0000 ICHK 0 C14

Synergy, A Land & Development Company June 11, 2004

ICHK 0									C14	0.000.0	0	C14	0.0000 TCHK	0	C14	0.0000	O	717	0.000.0	ICHK
IRELAF 25									C13	0.0000	37	C13	0.0000 TRELAE	37	C13	0.0000	1KELAF 37	Ę	0.000.0	IRELAF
SIGA 1.0000									C12	0.0000	1.0000	C12	0.0000 SIGA	1.0000	C12	0.0000	1.0000	615	0.000.0	SIGA
DSMIN 0.0000									C11	0.0000 NTM20	3.0000	C11	0.0000 DSMIN	3.0000	C11	0.0000	3.0000		0.000.0	DSMIN
PER 0.0000		1.000		1.000					C10	0.0000	0.000.0	C10	0.0000	0.0000	C10	0.000.0	0.0000	0.5	0.000.0	PER
C23		0.900		0.900					60	0.0000	0.000.0	65	0.0000	0.0000	65	0.000.0	0.0000	۶	0.000.0	C23
C22 0.0000		0.800		0.800					85	0.0000	0.0000	చ	0.0000	0.000.0	G8	0.000.0	0.0000	č	0.000.0	C22
C21		0.700	00.00	0.700	7.50				C2	0.0000	0.000.0	C.1	0.0000	0.0000	7.2	0.0000	0.0000	ć	0.000.0	C21
0.0000		0.600	MWF MAGNITUDE:	0.600	MWF MAGNITUDE:	0			95	0.0000	0.000.0	90	1.0000	0.000.0	C6	0.000.0	0.000.0	ž	1.0000	C20
C19		0 0.500	0 MWF N	0 0.500 0 1.500	2 MWF P	5 0.001000			CS	0.6470	000000	CS	0.6470 C19	0.000	CS	0.6470	0.000.0	נ	0.6470	C19
C18 0.0000		PLITUDES: 00 0.400 00 1.400	MWF:	2 AMPLITUDES: 0.300 0.400 1.300 1.400	MWF:	0 0.002105			C4	0.1490	0.000.0	C4	0.1490 Cl8	0.000.0	C4	0.1490	0.000.0	5	0.1490	C18
C17 0.0000		(1997) DEEP SOIL 1 AMPLITUDES: 0.100 0.200 0.300 0.4 1.100 1.200 1.300 1.4	FACTORS:		FACTORS:	0 0.005000		(64)	:3 	-1.3280	00000.0	S	-1.3280 C17	0.0000	3	-1.3280	0.0000	ć	-1.3280	C17
C16 0.0000		(1997) DEEP 0.100 0. 1.100 1.	MAGNITUDE WEIGHTING FACTORS:	(1997) DEEP SOIL 0.100 0.200 1.100 1.200	MAGNITUDE WEIGHTING FACTORS:	0.010000	.S: 34.4314	ORGNIA (19	C2	0.9040	0.000.0	CZ	0.9040 C16	0.000.0	CZ	0.9040	0.0000	ξ	0.9040	C16
C15	PROBLEM DATA:	SADIGH ET AL. (15 0	MAGNITUDE	SADIGH ET AL. (15 0	MAGNITUDE	RISKS SPECIFIED: 5 0.013900	SITE COORDINATES: 1 -118.4967	CAMPBELL AND BOZORGNIA (1997)	CI	-3.5120	0.0000	CI	-3.5120 C15	0.0000	CI	-3.5120	0.0000	ξ	-3.5120	C15
ATT 6	PROBL	SADIG 1		SADIG 1		RISKS 5	SITE	CAMPBE	ATT	1 ATT		ALT	2 ATT	73	ATT	۳ ا	A11 3	ልጥጥ	4	ATT

Synergy, A Land & Development Company June 11, 2004

Job No: 04-803S-4 Table D2.5

0	C14 0.0000 ICHK 0	C14 0.0000 ICHK 0								
37	C13 0.0000 IRELAF 37	C13 0.0000 IRELAF 37								
1.0000	C12 0.0000 SIGA 1.0000	C12 0.0000 SIGA 1.0000								
3.0000	C11 0.0000 DSMIN 3.0000	C11 0.0000 DSMIN 3.0000								
0.000.0	C10 0.0000 PER 0.0000	C10 0.0000 PER 0.0000	1.000		1.000					
0.000.0	C9 0.0000 C23 0.0000	C9 0.0000 C23 0.0000	0.900		0.900					
0.000	C8 0.0000 C22 0.0000	C8 0.0000 C22 0.0000	0.800		0.800				!	
0.000.0	C7 0.0000 C21 0.0000	C7 0.0000 C21 0.0000	0.700	00.00	0.700	7.50			 	
0.0000	C6 1.0000 C20 0.0000	C6 1.0000 C20 0.0000	0.600	MWF MAGNITUDE:	0.600	MWF MAGNITUDE:	0		1 1 1 1 1	
0.000.0	C5 0.6470 C19 0.0000	C5 0.6470 C19 0.0000	0 0.500 0 1.500	0 MWF M	0 0.500	2 MWF M	5 0.001000			
0.000.0	C4 0.1490 C18 0.0000	C4 0.1490 C18 0.0000	AMPLITUDES: 300 0.400 300 1.400	MWF:	AMPLITUDES: 0.300 0.400 0.300 1.400	MWF:	0.002105			
0.000.0	C3 -1.3280 C17 0.0000	C3 -1.3280 C17 0.0000	7 0	ACTORS:	0 1	ACTORS:	0.005000			
0.000.0	C2 0.9040 C16 0.0000	C2 0.9040 C16 0.0000	CAMP. & BOZ. (1997 Rev.) AL 1 15 0.100 0.200 1.100 1.200	MAGNITUDE WEIGHTING FACTORS:	CAMP. & BOZ. (1997 Rev.) AL 2 15 0.100 0.200 1.100 1.200	MAGNITUDE WEIGHTING FACTORS:	BCIFIED: 0.013900 0.010000 0.005000	.S: 34.4314	Ŋ.	N GABRIEL
0.000	C1 -3.5120 C15 0.0000	TT C1 6 -3.5120 TT C15 6 0.0000	2. & BOZ. (1 15 0	MAGNITUDE	P. & BOZ. (1)	MAGNITUDE	RISKS SPECIFIED: 5 0.013900	SITE COORDINATES:	FAULT INFORMATION:	FAULT 1 FAULT NAME: SAN GABRIEL
4	ATT 5 ATT 5	AIT 6 AIT 6 PROBI	CAMP.		CAMP.		RISKS 5	SITE	FAULT	FAULT

ATTENUATION CODES:

NRL 10

NFP 10

Job No: 04-803S-4

```
0.240
                                                                                                                                                                                                                                                                                                       0.910
                                                                                                                                                                                                                                                                                                       SIG_RA -3.490
I 1.0000 2.072 3.600 2.000 1.000
                                                                                                                                Slip Rate ( 1.0000 mm/yr) Converted to Activity Rate:
                                                                                                                                                                                                OGIO[MO(M)] = (1.50)m + (16.05)
IMAX AMMAX PWAX ARATE = EX-RATE + CH-RATE
1 7.0000 1.0000 0.00616 0.00445 0.00171
                                                                                                                                                                                                                                                                                                        B_RA
                                                                                                                                                                                                                                                                                                        RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                             Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ORIGINAL FAULT CROSS SECTION 1 0.0000 0.0000
                                                                                                                                                                         - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                              34.5536
34.5700
                                                                                                                                                                                                                                                                                                                                                                                                                                                       34.5792
34.7139
                                                                                                                                                                                                                                                                                                                                                                                                  34.4363
                                                                                                                                                                                                                                                                                                                                               34.3179
34.3394
                                                                                                                                                                                                                                                                                                                                                                          34.3598
                                                                                                                                                                                                                                                                                                                                                                                        34.3853
                                                                                                                                                                                                                                                                                                                                   FAULT SEGMENT COORDINATES
                                                                                           dmchar ampchar dmpchar 0.50 6.50 1.00
 AMSTEP IRATE
                                                                                                                                                          0.330E+12
Input Fault Area
                                      NMAX AMMAX PMAX
1 7.00 1.00
                                                                                                                                                                                                                                                                                                                                               -118.2802
                                                                                                                                                                                                                                                                                                                                                                                                  -118.5587
-118.5975
                                                                                                                                                                                                                                                                                                                                                                                                                                                       -118.7312
-118.8761
                                                                                                                                                                                                                                                                                                                                                                          -118.3904
                                                                                                                                                                                                                                                                                                                                                                                        -118.4577
                                                                                                                                                                                                                                                                                                                                                                                                                              -118.6873
                                                                                                                                                                                                                                                                                                                                                                                                                                            -118.7026
           0.1000
                                                                                                                                                                                                LOG10[Mo(m)]
                                                                                                                                                                                      0.936E+13
                                                                                                                                                                                                                                                                   IND_RL
 AMMIN
5.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NDP
                                                                                                                                                                                                                                                                                                                                                                                        4 72 0
```

Synergy, A Land & Development Company June 11, 2004

N

APPENDIX D

Job No: 04-803S-4

```
0.240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SIG_RA -3.490

        RATE
        BETA
        ECTR
        ECDP
        COEF

        0.4000
        2.072
        1.000
        2.000
        1.000

                                                                                                                                                                                                                                                                                                                                                                                                                                                 Slip Rate ( 0.4000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         OGIO [MO (m)] = (1.50)m + (16.05)
IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE
1 6.5000 1.0000 0.00212 0.00097 0.00115
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           B_RA
                                     Computed Total Fault Area = 0.93E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                      ATTENUATION CODES:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Input Fault Area - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FAULT SEGMENT COORDINATES
1 -118.7533 34.4386
2 -118.7345 34.4386
0.0000 13.0000
                                                                                                                                                                                                                                                                                                                                                                                             dmchar ampchar dmpchar
                                                                                                                                                                                                                                                           AMSTEP IRATE 0.1000 1
                                                                                                                                                   FAULT NAME: HOLSER
                                                                                                                                                                                                                                                                                                                                                                                                             6.00
                                                                                                                                                                                                                                                                                                                     NMAX AMMAX PMAX
1 6.50 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LOG10 [Mo(m)]
                                                                                                                                                                                                        NRL
10
                                                                                                                                                                                                                                                                                                                                                                                                              0.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.330E+12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.280E+13
                                                                                                                N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IND_RL
                                                                                                                FAULT
                                                                                                                                                                                                                                                                                 5.000
                                                                                                                                                                                                                                                                AMMIN
                                                                                                                                                                                                         NFP
5
```

Job No: 04-803S-4

```
E RATE BETA ECTR ECDP COEF 1 1.5000 2.072 1.500 2.000 1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Slip Rate ( 1.5000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2

        IMAX
        AMMAX
        PMAX
        ARATE
        EX-RATE
        + CH-RATE

        1
        6.9000
        1.0000
        0.00891
        0.00602
        0.00288

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   = (1.50)m + (16.05)
                                                                                                                                                                                                                                                                                                 FAULT NAME: NORTHRIDGE (E. Oak Ridge)
                                                                                                                                                                                   Computed Total Fault Area = 0.26E+03
                                                                                                                                                                                                                                                                                                                                                          ATTENUATION CODES:
                                                                                                         ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 5.9000 12.7000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - cm**2
 34.4499
34.4487
34.4172
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              dmchar ampchar dmpchar
                                                                                                                                                                                                                                                                                                                                                                                                                  AMSTEP IRATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Input Fault Area
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6.40
-118.6741
-118.6427
-118.5483
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NMAX AMMAX PMAX
1 6.90 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                    0.1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  LOG10 [Mo(m)]
                                                                                                                                                                                                                                                                                                                                                          NRL
10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 05.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.682E+13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.360E+12
                                                                                                                                                                                                                                                              FAULT 3
                                                                                                                                                                                                                                                                                                                                                                                                                  AMMIN
                                                                                                                                                                                                                                                                                                                                                                                                                                    5.000
                                                                                                                                                                                                                                                                                                                                                          NFP
2
                                                                           NDP
```

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

Table D2.9

Job No: 04-803S-4

```
0.240
                                                0.910
                                               SIG_RA -3.490
                                                                                                                                                                                                                                                                                                                                                                                                                                                               RATE BETA BCTR ECDP COEF 5.0000 2.072 1.300 2.000 1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Slip Rate ( 5.0000 mm/yr) Converted to Activity Rate:
Input Shear Modulus - dyne/cm**2
0.330E+12
                                                  B_RA
                                                                                                                                                                                                                                                                 Computed Total Fault Area = 0.67E+03
                                              RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                                                                                                                                                                                                                                 ATTENUATION CODES:
                                                                                                                                                                            ORIGINAL FAULT CROSS SECTION
1 0.0000 4.9900
2 0.0000 5.0000
3 16.3000 19.7000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - cm**2
                                                                            FAULT SEGMENT COORDINATES
1 -118.7027 34.4057
2 -118.4078 34.2781
                                                                                                                                                                                                                                                                                                                                                                FAULT NAME: SANTA SUSANA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               dmchar ampchar dmpchar 0.50 6.10 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                               AMSTEP IRATE 0.1000 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Input Fault Area
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NMAX AMMAX PMAX
1 6.60 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                 NRL
10
                                                                                                                                                                                                                                                                                                                                FAULT 4
IND_RL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.000
                                                                                                                                                                                                                                                                                                                                                                                                                  NFP
                                                                                                                                                 NDP
```

0.432E+13

APPENDIX D

```
0.240
                                                                                                             0.910
                                                                                                            SIG_RA -3.490
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IB RATE BETA ECTR ECDP COEF 1 2.0000 2.072 0.900 2.000 1.000
            IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE
1 6.6000 1.0000 0.03249 0.01677 0.01573
                                                                                                              B_RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                    FAULT NAME: SIERRA MADRE (San Fernando)
= (1.50)m + (16.05)
                                                                                                                                                                                                                                                                                                                                                                Computed Total Fault Area = 0.41E+03
                                                                                                           RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ATTENUATION CODES:
                                                                                                                                                                                                                                                                                                        ORIGINAL FAULT CROSS SECTION
                                                                                                                                                                  34.3242
34.3030
                                                                                                                                                                                                                                     34.3506
34.3594
                                                                                                                                                                                                                                                                                                                        0.0000 0.0000
9.2000 13.1000
                                                                                                                                                                                                                         34.3330
                                                                                                                                                                                              34.3204
                                                                                                                                                                                                          34.3229
                                                                                                                                      FAULT SEGMENT COORDINATES
                                                                                                                                                     34.3242
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      AMSTEP IRATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                                                                    -118.4950
                                                                                                                                                                  -118.4955
-118.5340
                                                                                                                                                                                                                                     -118.7081
-118.7672
                                                                                                                                                                                                           -118.6163
                                                                                                                                                                                                                          -118.6339
                                                                                                                                                                                              -118,5811
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.1000
LOG10 [Mo (m)]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            NRL
10
                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      AMMIN
                                                                   IND_RL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NFP
                                                                                                                                                                                                                                                                                NDP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8
```

dmchar ampchar dmpchar 0.50 6.20 1.00

NMAX AMMAX PMAX 1 6.70 1.00

APPENDIX D

Job No: 04-803S-4

```
0.240
                                                                                                                                                                                                      0.910
                                                                                                                                                                                                     SIG_RA -3.490
Slip Rate ( 2.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                           OGIO[MO(m)] = (1.50)m + (16.05)

IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE

1 6.7000 1.0000 0.00781 0.00447 0.00334
                                                                                                                                                                                                     B_RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Computed Total Fault Area = 0.33E+03
                                                                                                                                                                                                 RUPTURE AREA VS. MAGNITUDE A RA
                                                                                                                                                                                                                                                                                                                                                                                                                ORIGINAL FAULT CROSS SECTION
                                                - cm**2
                                                                                                                                                                                                                                             34.2782
34.2782
34.2745
34.2905
34.3039
                                                                                                                                                                                                                                                                                                                       34.2940
34.3027
34.3027
                                                                                                                                                                                                                                                                                                                                                                                                                               0.0000 0.0000
12.7000 12.7000
                                                                                                                                                                                                                               FAULT SEGMENT COORDINATES
                               0.330E+12
Input Fault Area
                                                                                                                                                                                                                                                             -118.2951
-118.3196
                                                                                                                                                                                                                                                                                                                                      -118.4778
                                                                                                                                                                                                                                                 -118.2940
                                                                                                                                                                                                                                                                                           -118.3956
                                                                                                                                                                                                                                                                                                                          -118.4520
                                                                           LOG10[Mo(m)]
                                                              0.324E+13
                                                                                                                                                      IND RL
```

FAULT NAME: VERDUGO

FAULT 6

APPENDIX D

Job No: 04-803S-4

```
0.240
                                                                                                                                                                                                                                                                                                                                                                         0.910
                                                                                                                                                                                                                                                                                                                                                                          SIG_RA -3.490
                                        TE RATE BETA ECTR ECDP COEF 1 0.5000 2.072 1.400 2.000 1.000
                                                                                                                                                                                     Slip Rate ( 0.5000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                                       IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE 1 6.7000 1.0000 0.00315 0.00180 0.00135
                                                                                                                                                                                                                                                                                                                                                                            B_RA
                                                                                                                                                                                                                                                           = (1.50)m + (16.05)
                                                                                                                                                                                                                                                                                                                                                                          RUPTURE AREA VS. MAGNITUDE A_RA
ATTENUATION CODES:
                                                                                                                                                                                                                                - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                     34.1313
34.1496
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             34.2227
34.2538
                                                                                                                                                                                                                                                                                                                                                                                                                                                  34.1551
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 34.1971
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          34.2612
                                                                                                                                                                                                                                                                                                                                                                                                        FAULT SEGMENT COORDINATES
                                                                                                                                            dmchar ampchar dmpchar
                                         AMSTEP IRATE
                                                                                                                                                                                                                              Input Fault Area
0.522E+13
                                                                                               1 6.70 1.00
                                                                                    NMAX AMMAX PMAX
                                                                                                                                                                                                                                                                                                                                                                                                                     -118.1536
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -118.3657
                                                                                                                                                                                                                                                                                                                                                                                                                                                  -118.2285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -118.2907
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -118.4206
                                                        0.1000
                                                                                                                                                                                                                                                          LOG10 [Mo (m)]
NRL
10
                                                                                                                                                          0.50
                                                                                                                                                                                                                   0.330E+12
                                                                                                                                                                                                                                                                                                                                 IND_RL
                                          AMMIN
                                                        5,000
```

Job No: 04-803S-4 Table D2.13

```
0.240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SIG_RA -3.490
                                                                                                                                                                                                                                                                                                                                   A.0000 2.072 2.500 2.000 1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Slip Rate ( 4.0000~\text{mm/yr}) Converted to Activity Rate. Input Shear Modulus - \text{dyne/cm**}2

        IMAX
        AMMAX
        PMAX
        ARATE
        E EX-RATE
        + CH-RATE

        1
        6.9000
        1.0000
        0.02235
        0.01511
        0.00723

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               B_RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = (1.50)m + (16.05)
                                                                                   Computed Total Fault Area = 0.52E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                         FAULT NAME: OAK RIDGE (Onshore)
                                                                                                                                                                                                                                                                      ATTENUATION CODES:
ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 12.7000 12.7000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               dmchar ampchar dmpchar 0.50 6.40 1.00
                                                                                                                                                                                                                                                                                                                                   AMMIN AMSTEP IRATE 5.000 0.1000 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Input Fault Area
0.700E+13
LOG10[Mo(m)]
                                                                                                                                                                                                                                                                                                                                                                                            NMAX AMMAX PMAX
1 6.90 1.00
                                                                                                                                                                                                                                                                        NRL
10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.330E+12
                                                                                                                                                                    FAULT 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IND_RL
                                                                                                                                                                                                                                                                        NFP
9
```

FAULT SEGMENT COORDINATES

APPENDIX D

```
AMMIN AMSTEP IRATE RATE BETA ECTR ECDP COEF 5.000 0.1000 1 6.0000 2.072 2.200 2.000 1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Slip Rate ( 6.0000 mm/yr) Converted to Activity Rate:
                                                                                                                                                                                                                                         Computed Total Fault Area = 0.67E+03
                                                                                                                                                                                                                                                                                                                                                                  ATTENUATION CODES:
                                                                                                                                                                 ORIGINAL FAULT CROSS SECTION
1 0.0000 1.0000
2 0.0000 1.1000
3 5.9000 13.7000
                                                                                 34.3850
34.4013
34.3978
              34.2630
34.3165
34.3522
                                                                                                                                                                                                                                                                                                                          FAULT NAME: SAN CAYETANO
                                                        34.3631
                                                                     34.3813
  34.2481
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         dmchar ampchar dmpchar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6.30
                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 6.80 1.00
-119.2050
             -119.1582
-119.0974
-119.0402
                                                                                 -118.8104
-118.7742
-118.7227
                                                       -118.9589
                                                                    -118,8805
                                                                                                                                                                                                                                                                                                                                                                  NRL
10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.50
                                                                                                                                                                                                                                                                                               FAULT 8
                                                                                                                                          NDP
                                                                                                                                                                                                                                                                                                                                                                                δ
```

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

Job No: 04-803S-4 Table D2.15

```
0.240
                                                                                                                                                      0.910
                                                                                                                                                      SIG RA -3.490
                                                0 [MO (m)] = (1.50)m + (16.05)

AX AMMAX PMAX ARATE = EX-RATE + CH-RATE

1 6.8000 1.0000 0.03867 0.02422 0.01445
                                                                                                                                                      B_RA
                                                                                                                                                                                                                                                                                                                                                                                                  Computed Total Fault Area = 0.60E+03
                                                                                                                                                     RUPTURE AREA VS. MAGNITUDE A_RA
Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ATTENUATION CODES:
                                                                                                                                                                                                                                                                                                                                                   ORIGINAL FAULT CROSS SECTION
                        - cm**2
                                                                                                                                                                                                                                34.4587
34.4612
34.4348
                                                                                                                                                                                                                                                                                 34.4386
34.4625
                                                                                                                                                                                          34.4361
34.4047
                                                                                                                                                                                                                                                                      34.4361
                                                                                                                                                                                                                                                                                                                                                              0.0000 0.0000
7.5000 13.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FAULT NAME: SIERRA MADRE
                                                                                                                                                                                                                   34.4172
                                                                                                                                                                             FAULT SEGMENT COORDINATES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2 4
                      Input Fault Area
                                                                                                                                                                                                                                                                      -119.0690
-119.1067
-119.1708
                                                                                                                                                                                          -118.7621
                                                                                                                                                                                                                   -118.9130
-118.9281
                                                                                                                                                                                                                                             -118.9382
                                                              IMAX AMMAX
                                               LOG10 [Mo(m)]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      NRL
10
                                     0.660E+13
                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT 9
            0.330E+12
                                                                                                               IND_RL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      NFP
12
```

Geology and Geotechnology

APPENDIX D

Synergy, A Land & Development Company

June 11, 2004

AMMIN

0.240 0.910 SIG_RA -3.490 AMSTEP IRATE RATE BETA BCTR ECDP COBF 0.1000 1 3.0000 2.072 2.800 2.000 1.000 Slip Rate (3.0000 mm/yr) Converted to Activity Rate: IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE 1 7.0000 1.0000 0.02034 0.01469 0.00565 B_RA = (1.50)m + (16.05)RUPTURE AREA VS. MAGNITUDE A_RA Input Shear Modulus - dyne/cm**2 - cm**2 34.1317 34.1323 34.1470 34.1501 34.2010 34.2028 34.2751 34.2751 FAULT SEGMENT COORDINATES 34.1752 34.1758 34.2279 34.1231 1.00 dmchar ampchar dmpchar 6.50 Input Fault Area NMAX AMMAX PMAX 1 7.00 1.00 -117.7691 -117.8176 -117.8807 -117.9402 -117.7397 -118.0027 -118.0683 -118.1118 -118.1492 -118.2461 -118.2896 -118.2960 LOG10[Mo(m)] 0.50 0.103E+14 0.330E+12 IND_RL 5.000 NDP 2 r & 0

Job No: 04-803S-4 Table D2.17

```
0.240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SIG_RA -3.490
                                                                                                                                                                                                                                                                                                           TE RATE BETA ECTR ECDP COEF 1 30.0000 2.072 4.900 2.000 0.500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Slip Rate ( 30.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.1j9E+14

LOG10[Wo(m)] = (1.50)m + (16.05)

IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE

1 7.1000 1.0000 0.17754 0.13551 0.04202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            B_RA
                                                                          Computed Total Fault Area = 0.11E+04
                                                                                                                                                                                              FAULT NAME: SAN ANDREAS - Mojave
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                                                                    ATTENUATION CODES:
ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 12.7000 12.7000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FAULT SEGMENT COORDINATES
                                                                                                                                                                                                                                                                                                                                                                                                                                                  dmchar ampchar dmpchar 0.50 6.60 1.00
                                                                                                                                                                                                                                                                                                           AMMIN AMSTEP IRATE 5.000 0.1000 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Input Fault Area
                                                                                                                                                                                                                                                                                                                                                                      NMAX AMMAX PMAX
1 7.10 1.00
                                                                                                                                                                                                                                                     NRL
10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.300E+12
                                                                                                                                                        FAULT 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IND_RL
                                                                                                                                                                                                                                                       NFP
                                                                                                                                                                                                                                                                      m
```

-118.5024

APPENDIX D

Table D2.18

Job No: 04-803S-4

```
AMSTEP IRATE RATE BETA ECTR ECDP COEF 0.1000 1 34.0000 2.072 17.200 2.000 0.500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Slip Rate (34.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ARATE = EX-RATE + CH-RATE
0.22372 0.20895 0.01477
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = (1.50)m + (16.05)
                                                                                                                                                                                                                                                                             FAULT NAME: SAN ANDREAS - 1857 Rupture
                                                                                                                                                                       Computed Total Fault Area = 0.12E+04
                                                                                                                                                                                                                                                                                                                               ATTENUATION CODES:
                                                                                                 ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 0.0000 12.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         - cm**2
34.6989
34.5116
34.3106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     dmchar ampchar dmpchar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IMAX AMMAX PMAX
1 7.8000 1.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      7.30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.300E+12
Input Fault Area
                                                                                                                                                                                                                                                                                                                                                                                                                                                  7.80 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                   NMAX AMMAX PMAX
               -118.0075
-117.5298
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LOG10 [Mo(m)]
                                                                                                                                                                                                                                                                                                                               NRL
10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.414E+14
                                                                                                                                                                                                                                          FAULT 11
                                                                                                                                                                                                                                                                                                                                                                               AMMIN
5.000
                                                                                                                                                                                                                                                                                                                               NFP
12
```

Job No: 04-803S-4

Table D2.19

```
0.240
                                    0.910
                                   SIG_RA -3.490
                                                                                                                                                                                                                                                                                                                                                                                                                      TE RATE BETA ECTR ECDP COEF 1 34.0000 2.072 7.200 2.000 0.500
                                   B_RA
                                                                                                                                                                                                                                                                                  Computed Total Fault Area = 0.41E+04
                                                                                                                                                                                                                                                                                                                                                     FAULT NAME: SAN ANDREAS - Carrizo
                               RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                                                                                                                                                                                                    ATTENUATION CODES:
                                                                                                                                                                                                                                    ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 0.0000 12.0000
                                                    FAULT SEGMENT COORDINATES

1 -120.5605 36.0019
2 -120.2928 35.7488
3 -119.8632 35.3106
4 -119.8598 35.3072
5 -119.6673 35.1336
                                                                                                                        34.9395
34.8639
34.8175
34.7006
34.6989
34.5116
                                                                                                                                                                                                                                                                                                                                                                                                                      AMMIN AMSTEP IRATE 5.000 0.1000 134
                                                                                                  -119.8598
-119.6673
-119.4061
                                                                                                                                   -119.2103
                                                                                                                                                                               -118.0075
-117.5298
                                                                                                                                                                                                                                                                                                                                                                                                                                                      NMAX AMMAX PMAX
1 7.20 1.00
                                                                                                                                                                   -118.5024
                                                                                                                                                         -118.5075
                                                                                                                                                                                                                                                                                                                                                                                     NRL
10
                                                                                                                                                                                                                                                                                                                              FAULT 12
IND_RL
                                                                                                                                                                                                                                                                                                                                                                                     NFP
                                                                11
10
10
11
11
12
                                                                                                                                                                                                                NDP
                                                                                                                                                                                                                                                                                                                                                                                                ø
```

Job No: 04-803S-4 Table D2.20

```
0.240
                                                                                                                                                                                         0.910
                                                                                                                                                                                       SIG_RA -3.490
                                 Slip Rate (34.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                                                     B_RA
                                                                                             = (1.50)m + (16.05)
                                                                                                                                                                                                                                                                                                                                                                            Computed Total Fault Area = 0.17E+04
                                                                                                                                                                                     RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                                                                                                                                            ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 0.0000 12.0000
                                                                      - cm**2
                                                                                                                                                                                                                        35.3072
35.1336
34.9395
                                                                                                                                                                                                                                                          34.8639
                                                                                                                                                                                                          FAULT SEGMENT COORDINATES
                                                                                                                                                                                                                                                                                 34.7006
dmchar ampchar dmpchar
             6.70
                                                                   Input Fault Area
                                                                                                                                                                                                                                                         -119.2103
-118.9010
-118.5075
                                                                                                                                                                                                                                   -119.6673
-119.4061
                                                                                                                                                                                                                         -119.8598
                                                                              0.174E+14
LOG10[Mo(m)]
                                                          0.300E+12
                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT 13
                                                                                                                                                    IND_RL
                                                                                                                                                                                                                                                                                                        NDP
                                                                                                                                                                                                                         H 2 W 4 W 6
```

FAULT NAME: SIMI-SANTA ROSA

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

Job No: 04-803S-4 Table D2.21

```
0.910
                                                                                                                                                                                                                                                                                                                                                                                    SIG_RA -3.490
                                           TE RATE BETA ECTR ECDP COEF
1 1.0000 2.072 1.500 2.000 1.000
                                                                                                                                                                                          Slip Rate ( 1.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                                             AX AMMAX PMAX ARATE = EX-RATE + CH-RATE 1 6.7000 1.0000 0.00543 0.00311 0.00232
                                                                                                                                                                                                                                                                                                                                                                                        B_RA
                                                                                                                                                                                                                                                                   = (1.50)m + (16.05)
                                                                                                                                                                                                                                                                                                                                                                                        RUPTURE AREA VS. MAGNITUDE A_RA
NRL ATTENUATION CODES: 10 2 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ORIGINAL FAULT CROSS SECTION
                                                                                                                                                                                                                                       Input Fault Area - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.0000
1.1000
14.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                34.2901
34.2578
34.2615
34.2615
                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT SEGMENT COORDINATES
                                                                                                                                               dmchar ampchar dmpchar
                                          AMSTEP IRATE 0.1000 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0000 0.0000 7.5000
                                                                                                                                                                6.20
                                                                                                                                                                                                                                                                                                                                                                                                                                 -118.7982
-118.9084
                                                                                       NMAX AMMAX PMAX
                                                                                                    1 6.70 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -118.9680
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -119.1147
                                                                                                                                                                                                                                                                                    IMAX AMMAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                               -118.9364
                                                                                                                                                                                                                                                                  LOG10 [Mo(m)]
                                                                                                                                                                0.50
                                                                                                                                                                                                                                                      0.450E+13
                                                                                                                                                                                                                          0.330E+12
                                                                                                                                                                                                                                                                                                                                              IND_RL
                                             AMMIN
                                                           5.000
```

Computed Total Fault Area = 0.45E+03

```
0.240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SIG_RA -3.490
                                                                                                                                              AMSTEP IRATE RATE BETA ECTR ECDP COEF 0.1000 1 0.000 2.072 0.800 2.000 1.000
                                                                                                                                                                                                                                                                                                                            Slip Rate ( 1.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2

        IMAX
        AMMAX
        PMAX
        ARATE
        EX-RATE
        + CH-RATE

        1
        6.4000
        1.0000
        0.00575
        0.00229
        0.00346

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      B_RA
                                                                                                                                                                                                                                                                                                                                                                                                                       = (1.50)m + (16.05)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RUPTURE AREA VS. MAGNITUDE A RA
                                                                                          ATTENUATION CODES:
                                                                                                                                                                                                                                                                                                                                                                                   - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        34.1192
34.1104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              34.0991
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT SEGMENT COORDINATES
                                                                                                                                                                                                                                                                          dmchar ampchar dmpchar
                                    FAULT NAME: HOLLYWOOD
                                                                                                           2
                                                                                                                                                                                                                                                                                            5.90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -118.2302
-118.3170
                                                                                                                                                                                                                                                                                                                                                                0.330E+12
Input Fault Area
                                                                                                                                                                                                                   6.40 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -118,3723
                                                                                                                                                                                                    NMAX AMMAX PMAX
                                                                                                                                                                                                                                                                                                                                                                                                  0.238E+13
LOG10[Mo(m)]
                                                                                          NRL
10
                                                                                                                                                                                                                                                                                            0.50
FAULT 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IND_RL
                                                                                                                                              AMMIN
                                                                                                                                                                5.000
                                                                                          NFP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4 2 6
```

Job No: 04-803S-4 Table D2.23

```
AMMIN AMSTEP IRATE RATE BETA ECTR ECDP COEF
5.000 0.1000 1 1.0000 2.072 1.400 2.000 1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Slip Rate ( 1.0000 mm/yr) Converted to Activity Rate:
Input Shear Modulus - dyne/cm**2
0.360E+12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LOGIO[MO(M)] = (1.50)M + (16.05)

IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE

1 6.6000 1.0000 0.00597 0.00308 0.00289
                                                                                                                                                                  Computed Total Fault Area = 0.25E+03
                                                                                                                                                                                                                                                                                                                                                      NRL ATTENUATION CODES:
                                                                             ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 4.8000 13.2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     - cm**2
                                                                                                                                                                                                                                                                                               FAULT NAME: SANTA MONICA
-118.4063 34.0827
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           dmchar ampchar dmpchar 0.50 6.10 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Input Fault Area
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 6.60 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.364E+13
                                                                                                                                                                                                                                                     FAULT 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IND_RL
                                          NDP
```

Table D2.24

Job No: 04-803S-4

```
0.240
    0.910
    SIG_RA -3.490
                                                                                                                                                                                                                                                                                                                                                                                                                                                AMSTEP IRATE RATE BETA ECTR ECDP COEF 0.1000 1 2.0000 2.072 3.400 2.000 1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Slip Rate ( 2.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
    B_RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = (1.50)m + (16.05)
                                                                                                                                                                                                                                 Computed Total Fault Area = 0.35E+03
RUPTURE AREA VS. MAGNITUDE A_RA
                                                                                                                                                                                                                                                                                                                                                                                              ATTENUATION CODES:
                                                                                                                                                                                                                                                                                                                                         FAULT NAME: SANTA YNEZ (East)
                                                                                                                                                           ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 3.4000 12.6000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - cm**2
                                  FAULT SEGMENT COORDINATES

1 -118.4085 34.0814

2 -118.5244 34.0263

3 -118.6855 33.9896
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         dmchar ampchar dmpchar 0.50 6.50 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Input Fault Area 0.884E+13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NMAX AMMAX PMAX
1 7.00 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LOG10 [Mo (m)]
                                                                                                                                                                                                                                                                                                                                                                                              NRL
                                                                                                                                                                                                                                                                                                                                                                                                             10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.330E+12
                                                                                                                                                                                                                                                                                                    FAULT 16
                                                                                                                                                                                                                                                                                                                                                                                                                                                               5.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                 AMMIN
                                                                                                                          NDP
                                                                                                                                                                                                                                                                                                                                                                                              NFP
                                                                                                                                                                                                                                                                                                                                                                                                               ø
```

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

Job No: 04-803S-4 Table D2.25

```
0.240
                                                                       0.910
                                                                       SIG_RA -3.490
                                                                                                                                                                                                                                                                                                                                                                              ATTE BETA ECTR ECDP COEF 0.5000 2.072 1.000 2.000 1.000
ARATE = EX-RATE + CH-RATE 0.01164 0.00840 0.00323
                                                                          B_RA
                                                                                                                                                                                                                                                 Computed Total Fault Area = 0.89E+03
                                                                       RUPTURE AREA VS. MAGNITUDE A RA
                                                                                                                                                                                                                                                                                                                                              ATTENUATION CODES:
                                                                                                                                                                                                       ORIGINAL FAULT CROSS SECTION
                                                                                                       34.4864
34.5065
34.5367
34.5317
34.5870
                                                                                                                                                                                                                  0.0000
                                                                                              FAULT SEGMENT COORDINATES
IMAX AMMAX PMAX
1 7.0000 1.0000
                                                                                                                                                                                                                                                                                                                                                                               AMSTEP IRATE 0.1000 1
                                                                                                                                                                                                                                                                                                                FAULT NAME: RAYMOND
                                                                                                                                                                                                                  0.0000
                                                                                                      -119.6298
-119.5091
-119.3783
-119.1972
                                                                                                                                                                                                                                                                                                                                                                                                              NMAX AMMAX PMAX
1 6.50 1.00
                                                                                                                                                  -119.1167
                                                                                                                                                                                                                                                                                                                                               NRL
10
                                                                                                                                                                                                                                                                                           FAULT 17
                                           IND_RL
                                                                                                                                                                                                                                                                                                                                                                                         5.000
                                                                                                                                                                                                                                                                                                                                                                                AMMIN
                                                                                                                                                                                                                                                                                                                                                 NFP
                                                                                                         11 21 24 15 10
```

dmchar ampchar dmpchar

```
0.240
                                                                                                                                                                                                                           0.910
                                                                                                                                                                                                                             SIG_RA -3.490
                            Slip Rate ( 0.5000 mm/yr) Converted to Activity Rate:
                                                                                                     JGIO [MO (m)] = (1.50) m + (16.05)

IMAX AMMAX PMAX ARATE = EX-RATE + CH-RATE

1 6.5000 1.0000 0.00259 0.00118 0.00140
                                                                                                                                                                                                                             B_RA
                                                                                                                                                                                                                                                                                                                                                                                                                                            Computed Total Fault Area = 0.26E+03
                                                                                                                                                                                                                           RUPTURE AREA VS. MAGNITUDE A RA
                                          Input Shear Modulus - dyne/cm**2
0.330E+12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ATTENUATION CODES:
                                                                                                                                                                                                                                                                                                                                                                              ORIGINAL FAULT CROSS SECTION
                                                                          - cm**2
                                                                                                                                                                                                                                                                                                                                                                                             0.0000
                                                                                                                                                                                                                                                                                      34.1444
34.1293
34.1217
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FAULT NAME: MALIBU COAST
                                                                                                                                                                                                                                                         FAULT SEGMENT COORDINATES
                                                                                                                                                                                                                                                                          34.1670
6.00
                                                                         Input Fault Area
                                                                                                                                                                                                                                                                                      -118.0579
-118.1258
                                                                                                                                                                                                                                                                                                                                                                                              0.000.0
                                                                                                                                                                                                                                                                                                                   -118.2227
                                                                                                                                                                                                                                                                                                                                                                                                              3.4000
                                                                                                                                                                                                                                                                         -118.0051
                                                                                                     LOG10 [Mo(m)]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NRL
10
                                                                                       0.273E+13
0.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT 18
                                                                                                                                                                                 IND_RL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NFP
```

Job No: 04-803S-4 Table D2.27

```
0.240
                                                                                                                                                                                                                                                                                                                                                                              0.910
                                                                                                                                                                                                                                                                                                                                                                             SIG_RA -3.490
 F RATE BETA ECTR ECDP COEF 1 0.3000 2.072 1.800 2.000 1.000
                                                                                                                                                             Slip Rate ( 0.3000 mm/yr) Converted to Activity Rate. Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                          ARATE = EX-RATE + CH-RATE
                                                                                                                                                                                                                                                                              0.00074
                                                                                                                                                                                                                                                                           0.00100
                                                                                                                                                                                                                                                                                                                                                                             B_RA
                                                                                                                                                                                                                                             = (1.50)m + (16.05)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Computed Total Fault Area = 0.48E+03
                                                                                                                                                                                                                                                          IMAX AMMAX PMAX ARATE = 1 6.7000 1.0000 0.00174
                                                                                                                                                                                                                                                                                                                                                                         RUPTURE AREA VS. MAGNITUDE A RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ORIGINAL FAULT CROSS SECTION
1 0.0000 0.0000
2 3.4000 12.6000
                                                                                                                                                                                                              - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                                         34.0412
34.0387
34.0513
                                                                                                                                                                                                                                                                                                                                                                                                           FAULT SEGMENT COORDINATES
1 -118.5333 34.0299
                                                                                                               dmchar ampchar dmpchar
AMSTEP IRATE
                                                                                                                                                                                                          Input Fault Area
0.481E+13
LOG10[Mo(m)]
                                                                                                                                                                                                                                                                                                                                                                                                                                          -118.6339
-118.6666
-118.9332
                                             NMAX AMMAX PMAX
1 6.70 1.00
             0.1000
                                                                                                                             0.50
                                                                                                                                                                                              0.3305+12
              5.000
                                                                                                                                                                                                                                                                                                                           IND_RL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           NDP
```

FAULT 19

FAULT NAME: NEWPORT-INGLEWOOD (L.A.Basin)

```
0.240
                                                                                                                                                                                                                                                                                                                                                                                 0.910
                                                                                                                                                                                                                                                                                                                                                                                 SIG_RA -3.490
                                             E RATE BETA ECTR ECDP COEF 1 1.0000 2.072 3.200 2.000 1.000
                                                                                                                                                                                         Slip Rate ( 1.0000 mm/yr) Converted to Activity Rate: Input Shear Modulus - dyne/cm**2
                                                                                                                                                                                                                                                              = (1.50)m + (16.05)
MAX ARATE = EX-RATE + CH-RATE
000 0.00664 0.00449 0.00215
                                                                                                                                                                                                                                                                                                                                                                                 B_RA
                                                                                                                                                                                                                                                                              AX AMMAX PMAX ARATE = 1 6.9000 1.0000 0.00664
                                                                                                                                                                                                                                                                                                                                                                                 RUPTURE AREA VS. MAGNITUDE A_RA
NRL ATTENUATION CODES: 10 1 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ORIGINAL FAULT CROSS SECTION
                                                                                                                                                                                                                                   - cm**2
                                                                                                                                                                                                                                                                                                                                                                                                                         34.0337
33.8073
33.7822
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     33.7746
                                                                                                                                                                                                                                                                                                                                                                                                            FAULT SEGMENT COORDINATES
                                                                                                                                                dmchar ampchar dmpchar
                                              AMSTEP IRATE
                                                                                                                                                               6.40
                                                                                                                                                                                                                                  Input Fault Area
                                                                                        NMAX AMMAX PMAX
1 6.90 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                      -118.1510
-118.1208
-117.9246
                                                                                                                                                                                                                                                                                                                                                                                                                           -118.3723
                                                                                                                                                                                                                                                                                                                                                                                                                                          -118.1862
                                                            0.1000
                                                                                                                                                                                                                                                                                IMAX AMMAX
                                                                                                                                                                                                                                                               LOG10[Mo(m)]
                                                                                                                                                               05.0
                                                                                                                                                                                                                                                  0.832E+13
                                                                                                                                                                                                                       0.330E+12
                                                                                                                                                                                                                                                                                                                                       IND_RL
                                             AMMIN
                                                            5.000
   NFP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NDP
                Ŋ
```

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

Job No: 04-803S-4 Table D2.29

```
0.2921E-010.2040E-010.1342E-010.8667E-020.5568E-020.3586E-020.2327E-020.1524E-020.1009E-020.6761E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.1757E-010.5116E-020.1593E-020.5407E-030.1994E-030.7911E-040.3345E-040.1495E-040.7009E-050.3428E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.1856E-010.3825E-020.9994E-030.3019E-030.1019E-030.3767E-040.1500E-040.6363E-050.2849E-050.1337E-050.2249E-020.5343E-030.1372E-030.3954E-040.1269E-040.4463E-050.1698E-050.6904E-060.2973E-060.1345E-060.1269E-060.1269E-050.1698E-050.1698E-050.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.1698E-060.16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.1931E-020.2958E-030.5741E-040.1346E-040.3669E-050.1128E-050.3828E-060.1409E-060.5554E-070.2322E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.9586E-030.1678E-030.3317E-040.7746E-050.2089E-050.6339E-060.2121E-060.7700E-070.2995E-070.1236E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.6321E-030.1233E-030.2698E-040.6835E-050.1970E-050.6320E-060.2218E-060.8397E-070.3390E-070.1447E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.9233E-030.1099E-030.1764E-040.3581E-050.8693E-060.2427E-060.7582E-070.2596E-070.9600E-080.3789E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.1583E+000.6243E-010.3092E-010.1722E-010.1022E-010.6306E-020.3995E-020.2584E-020.1700E-020.1136E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.1186E-020.11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.1464E+000.6053E-010.3044E-010.1707E-010.1017E-010.6287E-020.3987E-020.2581E-020.1699E-020.1136E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.1000E+000.2000E+000.3000E+000.4000E+000.5000E+000.6000E+000.7000E+000.8000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.900E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.9000E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.9000E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.9000E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000.900E+000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.4359E-020.2694E-020.1782E-020.1212E-020.8305E-030.5709E-030.3936E-030.2726E-030.1899E-030.1331E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.1904 E-020.1283 E-020.7874 E-030.4696 E-030.2789 E-030.1669 E-030.1012 E-030.6228 E-040.3893 E-040.2472 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.247 E-040.24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.7039E-020.4971E-020.3390E-020.2296E-020.1547E-020.1042E-020.7040E-030.4782E-030.3273E-030.2258E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.1945E-020,7566E-030,2930E-030.1185E-030.5055E-040.2271E-040.1070E-040.5258E-050.2685E-050.1418E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.9756E - 020.3116E - 020.1092E - 020.4133E - 030.1678E - 030.7244E - 040.3302E - 040.1577E - 040.7857E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.4059E - 050.40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.8103E-020.2562E-020.9247E-030.3649E-030.1548E-030.6977E-040.3313E-040.1646E-040.8503E-050.4548E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8103E-050.8102E-050.8102E-050.8102E-050.8102E-050.8102E-050.8102E-050.8102E-050.81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.2657E-010.7030E-020.2127E-020.7084E-030.2566E-030.1001E-030.4161E-040.1829E-040.843E-050.4067E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.1476E-010.4819E-020.2082E-020.9491E-030.4474E-030.2182E-030.1101E-030.5734E-040.3078E-040.1698E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.2704 \pm -020.5696 \pm -030.1266 \pm -030.3219 \pm -040.9284 \pm -050.2978 \pm -050.1045 \pm -050.3951 \pm -060.1593 \pm -060.6794 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -070.201 \pm -0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -0.22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.1100E+010.1200E+010.1300E+010.1400E+010.1500E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.9400E-040.6687E-040.4792E-040.3460E-040.2517E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.1593E-040.1042E-040.6907E-050.4637E-050.3152E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.2497E-040.1575E-040.1009E-040.6557E-050.4321E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.4581E-030.3138E-030.2173E-030.1520E-030.1074E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.1572E-030.1104E-030.7821E-040.5588E-040.4027E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.92
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -1.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             BOORE ET AL(1997) NEHRP D (250) Problem # 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SITE 1 COORDINATES: -118.4967 34.4314
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Computed Total Fault Area = 0.83E+03
                0.0000
                                                                                                                                                                                                 13.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AMPLITUDES (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LN (AMPLITUDE):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  LN (AMPLITUDE):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               AMPLITUDES (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              10 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                11 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  13 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    14 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     15 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        17 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          18 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           19 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            E (NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E(NO/YR)
0.000.0
                                                                                                                                                                                                 0.000.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RISK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              POTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TOTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT
```

Job No: 04-803S-4 Table D2.30

8733E-07	2293E-06	1558E-06	2976E-06	1726E-06	1225E-05	5165E-07	4484E-08	1786E-08	1775E-08	5699E-09	2867E-09	3821E-09	7414E-10	1825E-03	1825E-03	0.001000	0.031	1.03163
1457E-060.	3884E-060.	2739E-060.	4908E-060.	3074E-060.	1992E-050.	9339E-070.	8321E-080.	3454E-080.	3411E-080.	1114E-080.	5665E-090.	7384E-090.	1509E-090.	2574E-030.	2574E-030.	0.002105	-0.166	0.84727
2482E-060.	6721E-060.	4934E-060.	8261E-060.	5610E-060.	3298E-050.	1733E-060.	1588E-070.	.6886E-080.	6755E-080.	2249E-080.	1156E-080.	1471E-080.	3174E-090.	3667E-030.	3666E-030.	0.002000	-0.433	0.64837
.4325E-060.	.1191E-050.	.9129E-060.	.1422E-050.	.1052E-050.	.5571E-050.	.3311E-060.	.3123E-070,	.1420E-070.	.1383E-070.	.4700E-080.	.2443E-080	.3030E-080.	.6935E-090.	.5282E-030.	.5281E-030.	0.010000	-0.687	0.50321
0.7726E-060.4325E-060.2482E-060.1457E-060.8733E-07	0.2167E-050.1191E-050.6721E-060.3884E-060.2293E-06	0.1740E-050.9129E-060.4934E-060.2739E-060.1558E-06	0.2508E-050.1422E-050.8261E-060.4908E-060.2976E-06	0.2034E-050.1052E-050.5610E-060.3074E-060.1726E-06	0.9615E-050.5571E-050.3298E-050.1992E-050.1225E-05	0.6533E-060.3311E-060.1733E-060.9339E-070.5165E-07	0.6358E-070.3123E-070.1588E-070.8321E-080.4484E-08	0.3041E-070.1420E-070.6886E-080.3454E-080.1786E-08	0.2939E-070.1383E-070.6755E-080.3411E-080.1775E-08	0.1022E-070.4700E-080.2249E-080.1114E-080.5699E-09	0.5373E-080.2443E-080.1156E-080.5665E-090.2867E-09	0.6482E-080.3030E-080.1471E-080.7384E-090.3821E-09	0.1582E-080.6935E-090.3174E-090.1509E-090.7414E-10	0.7698E-030.5282E-030.3667E-030.2574E-030.1825E-03	0.7695E-030.5281E-030.3666E-030.2574E-030.1825E-03	0.013900	-0.828	0.43703
																		(g)
6 E(NO/YR)	7 E(NO/YR)	8 E(NO/YR)	9 E(NO/YR)	10 E(NO/YR)	11 E(NO/YR)	12 E(NO/YR)	13 E(NO/YR)	14 E(NO/YR)	15 E(NO/YR)	16 E(NO/YR)	17 E(NO/YR)	18 E(NO/YR)	19 E (NO/YR)	E (NO/YR)	RISK	SPECIFIED RISKS:	ESTIMATED LN AMP	ESTIMATED AMP. (g)
FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	FAULT	TOTAL	TOTAL RISK	SPEC	ESTI	EST

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

Job No: 04-803S-4

Table D2.31

0.3812E-030.3105E-040.3775E-050.6212E-060.1276E-060.3102E-070.8611E-080.2660E-080.8977E-090.3263E-090.3269E-090.3263E-090.3269E-090.3069E-090.300.8786E-010.3297E-010.1489E-010.7360E-020.3843E-020.2091E-020.1177E-020.6825E-030.4063E-030.2476E-030.240.8411E-010.3243E-010.1478E-010.7333E-020.3836E-020.2089E-020.1176E-020.6823E-020.4062E-030.2475E-030.289E-030.2899E-020.1176E-020.6823E-030.4062E-030.2475E-030.289E-030.289E-020.1176E-020.6823E-030.4062E-030.2475E-030.289E-030.289E-020.1176E-020.6823E-030.4062E-030.2475E-030.2475E-030.289E-030.289E-020.1176E-020.6823E-030.4062E-030.2475E-030.289E-030.013900 0.010000 0.005000 0.002105 0.001000 0.3298E-040.2223E-040.1515E-040.1043E-040.7256E-05 0.1534E-050.9026E-060.5424E-060.3323E-060.2073E-06 0.3149E-040.2037E-040.1337E-040.8893E-050.5991E-05 0.4076E-090.1675E-090.7183E-100.3211E-100.1470E-10 J.2850E-090.1215E-090.5420E-100.2513E-100.1199E-10 0.1100E+010.1200E+010.1300E+010.1400E+010.1500E+01 0.5248E-050.3097E-050.1866E-050.1145E-050.7155E-06 0.6866E-040.4292E-040.2729E-040.1763E-040.1156E-04 0.3171E-060.1631E-060.8658E-070.4726E-070.2646E-07 0.4551E-060.2247E-060.1147E-060.6039E-070.3267E-07 0.1244E-040.7367E-050.4451E-050.2740E-050.1715E-05 0.3403E-080.1527E-080.7142E-090.3465E-090.1737E-09 0.9132E-090.3876E-090.1721E-090.7944E-100.3777E-10 0.1323E-080.5746E-090.2608E-090.1229E-090.5993E-10 0.1264E-090.5162E-100.2206E-100.9718E-110.4425E-11 0.1541E-030.9777E-040.6313E-040.4142E-040.2759E-04 0.1541E-030.9777E-040.6313E-040.4142E-040.2759E-04 0.72843 0.6691E-070.3433E-070.1818E-070.9900E-080.5532E-08 0.1647E-060.8001E-070.4028E-070.2093E-070.1119E-07 0.5252E-060.2822E-060.1560E-060.8852E-070.5140E-07 0.1943E-060.9506E-070.4817E-070.2519E-070.1354E-07 J.9690E-100.3917E-100.1652E-100.7200E-110.3216E-11 0.59860 -0.513 0.34 -0.784 0.45637 0.26 0.35218 -1.044 -1.179 ESTIMATED AMP. (g): ESTIMATED LN AMP. AMPLITUDES (g): SPECIFIED RISKS: FAULT 19 E(NO/YR) E(NO/YR) LN (AMPLITUDE): 1 E(NO/YR) 2 E(NO/YR) 3 E(NO/YR) 4 E(NO/YR) 5 E(NO/YR) 6 E(NO/YR) E(NO/YR) 8 E(NO/YR) 12 E(NO/YR) 14 E(NO/YR) 16 E(NO/YR) 9 E(NO/YR) 10 E(NO/YR) 11 E(NO/YR) 13 E(NO/YR) 15 E(NO/YR) E (NO/YR) 17 E(NO/YR) 18 E(NO/YR) 19 E(NO/YR) TOTAL RISK FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT FAULT PAULT

SADIGH ET AL. (1997) DEEP SOIL - Problem # 1	g): 0.1000E+000.2000E+000.3000E+000.4000E+000.5000E+000.6000E+000.7000E+000.8000E+000.9000E+000.1000E+01	(B): -2.30 -1.61 -1.20 -0.92 -0.69 -0.51 -0.36 -0.22 -0.11 0.00	YR) 0.3719E-020,2456E-020,1717E-020,1170E-020,7652E-030,4854E-030,3026E-030,1873E-030,1160E-030,7217E-04	YR) 0.1749E-020.1221E-020.7958E-030.4978E-030.3063E-030.1882E-030.1163E-030.7261E-040.4589E-040.2939E-04	TR) 0.5403E-020,3092E-020,1681E-020,8532E-030,4199E-030,2058E-030,1019E-030,5138E-040,2646E-040,1394E-04	YR) 0.2545E-010.1586E-010.8930E-020.4788E-020.2537E-020.1353E-020.7338E-030.4058E-030.2292E-030.1323E-03	YR) 0.6142E-020.3958E-020.2338E-020.1300E-020.7047E-030.3809E-030.2077E-030.1150E-030.6480E-040.3721E-04
AL. (1997	AMPLITUDES (g):	LN (AMPLITUDE):	1 E(NO/YR)	2 E(NO/YR)	3 E(NO/YR)	4 E(NO/YR)	5 E(NO/YR)
SADIGH ET	AMP	LN	FAULT	FAULT	FAULT	FAULT	FAULT

0.1932E-050.4033E-050.1741E-050.7875E-060.3718E-0.0.2343B-040.8862E-050.23463E-050.138E-050.138E-050.595E-0.0.1938E-040.8878E-050.2546E-050.1038E-050.4183E-050.1393E-040.5878E-050.2546E-050.1038E-050.3158E-050.1428E-040.501881E-050.7489E-060.3158E-050.2548E-050.2489E-060.3158E-050.255E-050.203E-050.8926E-060.7745E-050.3108E-050.262E-050.8926E-060.318E-050.1259E-050.3110E-060.8789E-070.2819E-070.1016E-0.0.574E-060.1749E-060.5811E-070.2031E-070.1016E-0.0.574E-060.1457E-060.5811E-070.2031E-070.7670E-0.0.573EE-060.004E-070.7670E-0.0.505E-060.004E-070.7670E-0.0.373E-060.004E-070.3732E-090.4248E-1.0.2031E-070.1208E-070.3742E-080.1276E-080.4725E-0.0.2678E-070.5965E-080.2046E-080.6683E-090.23448E-1.0.20317E-070.1497E-020.8451E-030.4875E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.84474E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1467E-030.4874E-030.2871E-0.0.2713E-020.1497E-020.8447E-030.4874E-030.2871E-0.0.2713E-020.1467E-030.48747E-030.2871E-0.0.2713E-020.1467E-030.4877E-030.2871E-0.0.2713E-020.1467E-030.48747E-030.2871E-0.0.2713E-020.1467E-030.48747E-030.2871E-0.0.2713E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.2871E-0.0.2712E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.2871E-0.0.2712E-020.1467E-030.2871E-0.0.2712E-020.1467E-030.48747E-030.2871E-0.0.2712E-020.1467E-030.2	
0.1535E-020.5726E-030.1970E-030.6893E-040.2532E-040.9832E-050.4033E-050.1741E-050.7875E-060.3718B-060.773E-020.2241E-020.6753E-030.2081E-030.6770E-040.2343E-040.8621E-050.3364B-050.1385E-050.5996E-060.773E-020.2241E-020.7938E-030.624183E-040.6878E-050.2546E-050.1003E-050.4183E-060.1241E-010.3178E-020.7378E-020.7239E-030.62418-040.1993R-040.6878E-050.2546E-050.1003E-050.4183E-060.3158E-060.3158E-020.1241E-020.72348E-020.12415E-030.3158E-040.1458E-050.6313E-050.7489E-060.3158E-060.3158E-060.3158E-020.1336E-020.13248E-020.13415E-030.3158E-040.1456E-050.6313E-050.7489E-060.3158E-060.3158E-020.1336E-020.1348E-020.13415E-030.3165E-040.2580E-040.7931E-050.6221E-060.2115E-060.3158E-060.3158E-020.1348E-020.1348E-020.13415E-030.3165E-040.2580E-040.7381E-050.2602E-050.8926E-060.3218E-070.1018E-020.1348E-020.13784E-020.1378E-020.1236E-050.3158E-060.3158E-060.3218E-020.1384E-020.13782E-040.5866E-050.1259E-060.1749E-060.5811E-070.2033E-070.1018E-080.1378E-080.1396E-020.13782E-040.6823E-050.1258E-050.1258E-060.1457E-060.5811E-070.2033E-070.1018E-080.1490E-020.2369E-020.1352E-040.6823E-050.1258E-060.1749E-060.5603E-090.4248E-100.1302E-020.1302E-020.1302E-020.1302E-020.1302E-020.1303E-020.1303E-020.1303E-030.3303E-040.6833E-050.1302E-050.1232E-040.4042E-050.8570E-060.2128E-060.506E-070.1208E-070.1232E-090.4248E-100.7233E-030.3303E-040.4042E-050.6257E-060.1189E-060.24418E-070.03742E-080.6683E-090.2394E-090.0338F-030.3897B-050.6257E-060.1189E-020.2478E-030.2441E-030.2441E-030.4878E-030.2841E-030.2871E-030.1497E-030.4878E-030.2871E-030.030.1871E-030.1487E-030.2871E-030.1871E-030.1487E-030.2871E-030.2871E-030.1871E-030.2871E-030.1871E-030.1871E-030.1871E-030.1871E-030.2871E-030.1871E-030.	0.1100B+010.1200B+010.1300B+010.1400B+010.1500B+010 0.10 0.10 0.10 0.10 0.10 0.10 0.26 0.34 0.4528E-040.2869E-040.1839E-040.1193E-040.7830E-05 0.1907E-040.1254E-040.8344E-050.5622E-050.3832E-05 0.7518E-050.4144E-050.2365E-050.1346E-050.7909E-06 0.7789E-040.4678E-040.2863E-040.1784E-040.1130E-04 0.2178E-040.1299E-040.7886E-050.4872E-050.3061E-05 0.1826E-060.9289E-070.4885E-070.2648E-070.1477E-07 0.1835E-060.8432E-070.4483E-070.2016E-070.1477E-07 0.1835E-060.8432E-070.432E-070.2016E-070.1042E-07 0.1405E-060.6578E-070.3227E-070.1655E-070.1042E-07 0.1216E-060.4808E-070.1895E-070.8342E-090.1830E-09 0.3247E-070.1478E-080.8382E-090.4202E-090.2200E-09 0.3293E-080.1778E-080.659E-090.3225E-090.1619E-09 0.3293E-080.1458E-080.6699E-090.3225E-090.1619E-09 0.3293E-080.1458E-080.6699E-090.3225E-090.1619E-09 0.1606E-100.6313E-110.2479E-110.3826E-11 0.1860E-110.5364E-120.1158E-120.0000E+00 0.1725E-030.1056E-030.6580E-040.4171E-040.2687E-04
FAULT 7 E (NO/YR) FAULT 7 E (NO/YR) FAULT 9 E (NO/YR) FAULT 10 E (NO/YR) FAULT 11 E (NO/YR) FAULT 12 E (NO/YR) FAULT 13 E (NO/YR) FAULT 14 E (NO/YR) FAULT 16 E (NO/YR) FAULT 16 E (NO/YR) FAULT 16 E (NO/YR) FAULT 17 E (NO/YR) FAULT 18 E (NO/YR) FAULT 19 E (NO/YR) FAULT 19 E (NO/YR) FAULT 19 E (NO/YR) FAULT 19 E (NO/YR) FAULT 17 E (NO/YR) FAULT 19 E (NO/YR) FAULT 19 E (NO/YR) FAULT 19 E (NO/YR) FAULT 18 E (NO/YR) FAULT 18 E (NO/YR) FAULT 18 E (NO/YR) FAULT 18 E (NO/YR)	AMPLITUDES (9): LN (AMPLITUDE): FAULT 1 E(NO/YR) FAULT 3 E(NO/YR) FAULT 5 E(NO/YR) FAULT 6 E(NO/YR) FAULT 7 E(NO/YR) FAULT 1 E(NO/YR)

```
0.2469E-020.1601E-020.1029E-020.6054E-030.3348E-030.1795E-030.9518E-040.5052E-040.2704E-040.1465E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.1253E-020.6651E-030.3227E-030.1534E-030.7387E-040.3646E-040.1852E-040.9682E-050.5203E-050.2870E-050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.3445E-020.1745E-020.7433E-030.2930E-030.1143E-030.4539E-040.1858E-040.7862E-050.3444E-050.1560E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ).1698E-010.7607E-020.3036E-020.1194E-020.4825E-030.2028E-030.8885E-040.4055E-040.1921E-040.9428E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     9.4105E-020.206E-020.9050E-030.3771E-030.1576E-030.6754E-040.2988E-040.1368E-040.6476E-050.3164E-050.860.868E-050.868E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E-050.888E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.8621E-030.2012E-030.4585E-040.1141E-040.3140E-050.9492E-060.3116E-060.1100E-060.4134E-070.1643E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.4144E-020.9181E-030.1948E-030.4435E-040.1109E-040.3039E-050.9057E-060.2908E-060.9980E-070.3632E-070.3632E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3600E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3630E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.3600E-070.36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.3277E-020.7323E-030.1535E-030.3385E-040.8116E-050.2123E-050.6028E-060.1844E-060.6035E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.2098E-070.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.1087E-010.1586E-020.2036E-030.2887E-040.4698E-050.8728E-060.1827E-060.4246E-070.1083E-070.2991E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.6935E-020.3194E-020.1117E-020.3487E-030.1074E-030.3391E-040.1114E-040.3824E-050.1371E-050.5128E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.5795E-020.6082E-030.6541E-040.8226E-050.1220E-050.2098E-060.4100E-070.8949E-080.2148E-080.5592E-09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.3855E-030.2065E-040.1815E-050.2300E-060.3801E-070.7675E-080.1812E-080.4853E-090.1437E-090.4618E-10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.4120E-030.2174E-040.1742E-050.1980E-060.2930E-070.5313E-080.1131E-080.2742E-090.7387E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.2157E-100.21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.2968E-030.8829E-050.4023E-060.2733E-070.2542E-080.3023E-090.4357E-100.7148E-110.1089E-110.0000E+00.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.1077E-030.4133E-050.2825E-060.2923E-070.4071E-080.7082E-090.1464E-090.3464E-100.9090E-110.2355E-11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.1056E-030.4830E-050.3341E-060.3323E-070.4363E-080.7104E-090.1371E-090.3033E-100.7481E-110.1950E-11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3.7901E-040.1460E-050.5242E-070.3096E-080.2629E-090.2919E-100.3858E-110.4508E-120.0000E+000.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.6859E-010.2204E-010.7993E-020.3132E-020.1306E-020.5746E-030.2647E-030.1269E-030.6301E-040.3228E-040.3228E-040.388E-040.388E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.38888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.38888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.3888E-040.38888E-040.3888E-040.3888E-040.38888E-0400.3888E-0400.3888E-0400.38888E-0400.38888E-0400.3888E-0400.3888E-04000.38888E-0400.38888E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.6629E-010.2180E-010.7961E-020.3127E-020.1305E-020.5744E-030.2647E-030.1269E-030.6301E-040.3228E-040.3228E-040.388E-040.388E-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.0888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.3888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-040.0888-0400.08888-0400.0888-0400.0888-0400.0888-0400.0888-0400.0888-0400.0888-0400.0888-0400.0888-04000.088
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.1000E+000.2000E+000.3000E+000.4000E+000.5000E+000.5000E+000.7000E+000.8000E+000.9000E+000.1000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -0.22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -0.36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -0.51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.8049E-050.4491E-050.2546E-050.1466E-050.8569E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.1622E-050.9372E-060.5529E-060.3325E-060.2035E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.7292E-060.3511E-060.1739E-060.8835E-070.4599E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.1394E-070.5606E-080.2353E-080.1026E-080.4634E-09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.6148E-080.2394E-080.9756E-090.4134E-090.1811E-09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.7698E-080.2967E-080.1195E-080.5011E-090.2178E-09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.1995E-060.8051E-070.3362E-070.1449E-070.6430E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.1556E-090.4600E-100.1348E-100.2981E-110.9940E-12
           -0.263
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.1100E+010.1200E+010.1300E+010.1400E+010.1500E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.4776E-050.2491E-050.1335E-050.7327E-060.4114E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D.1593E-050.8241E-060.4375E-060.2378E-060.1322E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.6858E-080.2991E-080.1357E-080.6377E-090.3095E-09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.8860E-090.2781E-090.9102E-100.3047E-100.3802E-11
                                                                                                                                             0.76910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -0.69
           -0.445
                                                                                                                                 0.64078
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -0.92
                                                                                                                                             0.50140
           -0.690
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1.20
           -0.929
                                                                                                                                             0.39494
                                                                                                                                                                                                                                                                                                                                                                                                                                       SADIGH ET AL. (1997) DEEP SOIL - Problem # 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1.61
                                                                                                                                             0.34500
           -1.064
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -2.30
                                   ..
                                                                                                                                             ESTIMATED AMP. (g):
ESTIMATED LN AMP.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AMPLITUDES (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              LN (AMPLITUDE):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                AMPLITUDES (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             LN (AMPLITUDE):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    11 E(NO/YR)
12 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             6 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          7 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              6 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       7 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               10 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     12 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       13 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    14 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             15 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       16 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        17 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     18 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              19 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 9 E (NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  10 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RISK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TOTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
```

```
0.3150E-030.2775E-040.3652E-050.6418E-060.1394E-060.3555E-070.1029E-070.3304E-080.1155E-080.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4336E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4936E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.4996E-090.49996E-0900.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.6061E-020.1781E-020.4613E-030.1161E-030.3018E-040.8275E-050.2409E-050.7437E-060.2429E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8356E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.8566E-070.85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.9993E-020.2139E-020.4344E-030.9393E-040.2228E-040.5801E-050.1647E-050.5053E-060.1662E-060.5813E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.4667 \pm 0.20.1350 \pm 0.20.3542 \pm -030.9053 \pm -040.2384 \pm -040.6613 \pm -050.1943 \pm -050.6051 \pm -060.1990 \pm -060.6888 \pm -070.1990 \pm -060.1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.1803E-010.4933E-020.1141E-020.2629E-030.6422E-040.1689E-040.4789E-050.1456E-050.4721E-060.1622E-060.1622E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.1620E-060.16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.9209E-020.4609E-020.2008E-020.7539E-030.2679E-030.9469E-040.3405E-040.1259E-040.4803E-050.1893E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.8852E-030.9474E-040.1346E-040.2456E-050.5445E-060.1405E-060.4096E-070.1319E-070.4616E-080.1734E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.8327 \\ \text{E-}030.9681 \\ \text{E-}040.1436 \\ \text{E-}040.2668 \\ \text{E-}050.5940 \\ \text{E-}050.5940 \\ \text{E-}060.1528 \\ \text{E-}060.4418 \\ \text{E-}070.1408 \\ \text{E-}070.4866 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E-}080.1804 \\ \text{E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.2846E-030.2455E-040.3158E-050.5475E-060.1181E-060.3005E-070.8708E-080.2801E-080.9827E-090.3707E-09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.2091E-030.2120E-040.2944E-050.5317E-060.1174E-060.3026E-070.8831E-080.2850E-080.1000E-080.3769E-090.000E-080.3769E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.0000E-090.000E-090.0000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E-090.000E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.1045E+000.4757E-010.2305E-010.1119E-010.5368E-020.2561E-020.1227E-020.5936E-030.2914E-030.1455E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.10000E+000.2000E+000.3000E+000.4000E+000.5000E+000.6000E+000.7000E+000.8000E+000.9000E+000.9000E+000.1000E+010.1000E+010.9000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1000E+010.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.3954 \pm -020.2744 \pm -020.1900 \pm -020.1232 \pm -020.7442 \pm -030.4274 \pm -030.2379 \pm -030.1303 \pm -030.7095 \pm -040.3864 \pm -040.386 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 040.3864 \pm 04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.5584E-020.3224E-020.1802E-020.9102E-030.4298E-030.1967E-030.8923E-040.4067E-040.1876E-040.8788E-050.8788E-050.888E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.8988E-050.898
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.2789\mathrm{E}{-010.1874\mathrm{E}{-010.1076\mathrm{E}{-010.5491\mathrm{E}{-020.2625\mathrm{E}{-020.1220\mathrm{E}{-020.5629\mathrm{E}{-030.2611\mathrm{E}{-030.1226\mathrm{E}{-030.5851\mathrm{E}{-040.500\mathrm{E}{-030.2611\mathrm{E}{-030.5620\mathrm{E}{-030.5851\mathrm{E}{-040.500\mathrm{E}{-030.5851\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.500\mathrm{E}{-040.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.6739E-020.4615E-020.2818E-020.1540E-020.7789E-030.3778E-030.1802E-030.8575E-040.4108E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.1991E-040.19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.1443E-020.4856E-030.1349E-030.3562E-040.9596E-050.2706E-050.8057E-060.2533E-060.8395E-070.2922E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.1065E-020.1129E-030.1594E-040.2902E-050.6433E-060.1663E-060.4857E-070.1568E-070.5504E-080.2073E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.001000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.2114E-040.1165E-040.6477E-050.3638E-050.2065E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.1100E+010.1200E+010.1300E+010.1400E+010.1500E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.3878E-120.0000E+000.0000E+000.0000E+000.0000E+000
                                                                                                                                                                                                                                                                           0.1588E-100.5202E-110.7958E-120.0000E+000.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.3636E-120.0000E+000.0000E+000.0000E+000.0000E+000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.1700E-040.9190E-050.5084E-050.2874E-050.1658E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.1700E-040.9190E-050.5084E-050.2874E-050.1658E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.53047
                      0.5000E-100.1770E-100.6450E-110.2353E-110.7236E-12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.6404E-110.1435E-110.0000E+000.0000E+000.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.002105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.44254
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -0.815
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.005000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.34618
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -1.061
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -1.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.010000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.27369
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -1.296
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CAMP. & BOZ. (1997 Rev.) AL - Problem # 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.013900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.23972
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -1.428
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ESTIMATED AMP. (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ESTIMATED LN AMP.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     AMPLITUDES (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AMPLITUDES (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          LN (AMPLITUDE):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SPECIFIED RISKS:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LN (AMPLITUDE);
13 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               9 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      11 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             13 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         14 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     15 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            17 E(NO/YR)
                                                                                                                                                                                                                                                                           14 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       15 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  16 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              17 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   18 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     19 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E (NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          5 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        18 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         19 E(NO/YR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TOTAL RISK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TOTAL RISK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 POTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
                                                                                                                                                                                                                                                                                                 FAULT
```

Job No: 04-803S-4

Table D2.35

CAMP. & BOZ. (1997 Rev.) AL - Problem # 2	& BOZ. (1997 Rev.)	CAMP.
: -1.003 -0.882 -0.676 -0.470 -0.319	ESTIMATED LN AMP.	EST
0.013900 0.010000 0.005000 0.002105 0.001000	SPECIFIED RISKS:	SPE
0.7389E-040.3820E-040.2009E-040.1075E-040.5847E-05	RISK	TOTAL
0.7389E-040.3820E-040.2009E-040.1075E-040.5847E-05	E (NO/YR)	TOTAL
0.1731E-090.7284E-100.3206E-100.1466E-100.6891E-11	<pre>L 19 E(NO/YR)</pre>	FAULT
0.1509E-090.6372E-100.2817E-100.1297E-100.6175E-11	<pre>C 18 E(NO/YR)</pre>	FAULT
0.1488E-090.6304E-100.2794E-100.1284E-100.6036E-11	<pre>L 17 E(NO/YR)</pre>	FAULT
0.7100E-090.2945E-090.1279E-090.5781E-100.2702E-10	r 16 E(NO/YR)	FAULT
0.6917E-090.2909E-090.1282E-090.5879E-100.2790E-10	r 15 E(NO/YR)	FAULT
0.8298E-090.3501E-090.1547E-090.7118E-100.3396E-10	[14 E(NO/YR)	FAULT
0.1167E-080.4756E-090.2030E-090.9024E-100.4160E-10	<pre>L 13 E(NO/YR)</pre>	FAULT
0.2204E-070.8543E-080.3464E-080.1463E-080.6409E-09	F 12 E(NO/YR)	FAULT
0.7701E-060.3231E-060.1396E-060.6198E-070.2824E-07	F 11 E(NO/YR)	FAULT
0.5877E-070.2233E-070.8864E-080.3661E-080.1567E-08	r 10 E(NO/YR)	FAULT
0.2500E-070.9477E-080.3740E-080.1532E-080.6496E-09	r 9 E(NO/YR)	FAULT
0.2150E-070.8358E-080.3399E-080.1440E-080.6328E-09	r 8 E(NO/YR)	FAULT
0.3017E-070.1139E-070.4479E-080.1829E-080.7737E-09	<pre>r 7 E(NO/YR)</pre>	FAULT
0.1065E-070.4047E-080.1599E-080.6550E-090.2774E-09	F 6 E(NO/YR)	FAULT
0.9793E-050.4893E-050.2485E-050.1283E-050.6733E-06	r s e(no/yr)	FAULT
0.2840E-040.1404E-040.7069E-050.3623E-050.1890E-05	<pre>r 4 E(NO/YR)</pre>	FAULT
0.4191E-050.2036E-050.1008E-050.5081E-060.2608E-06	F 3 E(NO/YR)	FAULT
0.9423E-050.5189E-050.2887E-050.1625E-050.9250E-06	r 2 E(NO/YR)	FAULT

```
0.2674E-020.1700E-020.1053E-020.5733E-030.2856E-030.1361E-030.6369E-040.2977E-040.1403E-040.6692E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.1609E-050.16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.8025E-030.1498E-030.2378E-040.3963E-050.7290E-060.1488E-060.3350E-070.8233E-080.2189E-080.6244E-09
                                                                                                                                                                                                                                                                                                                                                                       0.10000E + 000.2000E + 000.3000E + 000.4000E + 000.5000E + 000.6000E + 000.7000E + 000.8000E + 000.9000E + 000.9000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.000E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 000.00E + 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.1394E-020.8211E-030.3910E-030.1635E-030.6504E-040.2566E-040.1024E-040.4171E-050.1743E-050.7477E-060.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.1024E-040.10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.3491E-020.1920E-020.8406E-030.3215E-030.1175E-030.4287E-040.1593E-040.6078E-050.2390E-050.9696E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.1882E-010.9253E-020.3504E-020.1183E-020.3904E-030.1309E-030.4532E-040.1627E-040.6071E-050.2350E-050.0350E-050.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.0350E-030.03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.4462E-020.2507E-020.1109E-020.4207E-030.1515E-030.5436E-040.1987E-040.7469E-050.2896E-050.1160E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.3598E-020.7003E-030.1190E-030.2105E-040.4075E-050.8703E-060.2039E-060.5202E-070.1432E-070.4219E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2039E-080.2029E-080.2029E-080.2039E-080.20200.2039E-080.200.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.5084 E-020.6149 E-070.7784 E-040.1156 E-040.2013 E-050.4038 E-060.9147 E-070.2300 E-070.6335 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.188 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-080.1888 E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.2834 \\ \text{E-}020.6020 \\ \text{E-}030.1119 \\ \text{E-}030.2132 \\ \text{E-}040.4393 \\ \text{E-}050.9885 \\ \text{E-}050.2833 \\ \text{E-}060.2423 \\ \text{E-}060.6430 \\ \text{E-}070.1832 \\ \text{E-}070.5571 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E-}080.2834 \\ \text{E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.1198E-010.2401E-020.4103E-030.7395E-040.1474E-040.3262E-050.7950E-060.2113E-060.6064E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.1864E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18664E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-070.18665E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.7288E-020.4350E-020.2070E-020.8444E-030.3246E-030.1234E-030.4746E-040.1866E-040.7534E-050.3128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.2128E-050.21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.7057E-020.1170E-020.1923E-030.3494E-040.7158E-050.1642E-050.4166E-060.1156E-060.3469E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.1116E-070.11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.4098E-030.2985E-040.2991E-050.4010E-060.6753E-070.1360E-070.3165E-080.8290E-090.2396E-090.7529E-10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.2426E-030,1045E-040,8222E-060,9723E-070.1530E-070.2976E-080.6816E-090,1778E-090.5159E-100.1610E-10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.92
CAMP. & BOZ. (1997 Rev.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E(NO/YR)
                                                                                                                                                                                                                                                                                                                               AMPLITUDES (g):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1 E(NO/YR)
2 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IN (AMPLITUDE):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4 E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E(NO/YR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FAULT
FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FAULT
FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FAULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT
```

Geology and Geotechnology

Synergy, A Land & Development Company June 11, 2004

APPENDIX D

Job No: 04-803S-4 Table D2.36

0.2686E-030.1392E-040.1223E-050.1563E-060.2610E-070.5319E-080.1267E-080.3417E-090.1021E-090.3308E-10 0.4302E-030.3327E-040.3708E-050.5547E-060.1037E-060.2305E-070.5878E-080.1677E-080.5552E-090.1780E-09 0.6713E-040.2720E-050.2168E-060.2650E-070.4337E-080.8786E-090.2096E-090.5684E-100.1702E-100.5462E-11 0.7007E-040.3773E-050.3452E-060.4577E-070.7902E-080.1661E-080.4068E-090.1126E-090.3448E-100.1145E-10 0.1330E-030.7511E-050.7342E-060.1033E-060.1877E-070.4127E-080.1052E-080.3019E-090.9544E-100.3266E-10 0.7111E-010.2629E-010.9913E-020.3674E-020.1368E-020.5207E-030.2043E-030.8290E-040.3480E-040.1509E-04 0.6864E-010.2595E-010.9864E-020.3668E-020.1367E-020.5205E-030.2043E-030.8290E-040.3480E-040.1509E-04	
1-060.2610E-070.53 1-060.1037E-060.23 1-070.4337E-080.87 1-070.7902E-080.16 1-060.1877E-070.43 1-020.1367E-020.52	400E+010.1500E+01 0.34 0.41 0.41 0.42 0.41 0.42 0.41 0.42 274E-070.1588E-07 359E-070.1336E-07 359E-070.3336E-07 017E-110.2395E-11 458E-100.1965E-10 458E-100.1965E-10 035E-100.3032E-10 035E-100.1965E-10 035E-100.1965E-10 035E-100.119E-09 220E-060.5770E-07 075E-090.8463E-10 000E+000.0000E+00 000E+000.0000E+00 000E+000.0000E+00 000E+000.0000E+00 000E+000.0000E+00 000E+000.0000E+00 0129E-060.3540E-06 129E-060.3540E-06 129E-060.3540E-06 129E-060.3540E-06
.1223E-050.1563E .3708E-050.5547F .2168E-060.2650E .3452E-060.4577F .7342E-060.1033E .9913E-020.3668E	13300E+010.1 0.26 8009E-060.4 6900E-070.3 17727E-070.4 1673E-060.7 18935E-070.4 1521E-090.2 17159E-100.7 17159E-100.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1718-090.2 1756E-110.6
.3327E-040 .2720E-050 .3773E-050 .3773E-050 .7511E-050	0.1200E+010 0.18 1.1598E-050 1.1489E-060 1.1746E-060 1.3910E-060 1.2040E-090 1.2040E-090 1.208E-110 1.1028E-110 1.1028E-110 1.1028E-110 1.1028E-110 1.1028E-110 1.1028E-110 1.246EE-110 1.447E-1110 1.5684E-050 1.3107E-050 1.447E-1110 1.210000 1.210000 1.210000 1.210000 1.210000
0.2686E-030 0.4302E-030 0.6713E-040 0.7007E-040 0.1330E-030 0.7111E-010	
15 E(NO/YR) 16 E(NO/YR) 17 E(NO/YR) 18 E(NO/YR) 19 E(NO/YR) E(NO/YR)	AMPLITUDES (9): LN (AMPLITUDE): ULT 1 E (NO/YR) ULT 2 E (NO/YR) ULT 3 E (NO/YR) ULT 5 E (NO/YR) ULT 7 E (NO/YR) ULT 7 E (NO/YR) ULT 7 E (NO/YR) ULT 1 E E (NO/YR) ULT 1 E (NO/YR) ULT 1 E ENO/YR) ULT 1 E ENO/YR)
FAULT 15 FAULT 17 FAULT 18 FAULT 19 TOTAL	AMPLITU LN (AMP FAULT 1 FAULT 2 FAULT 3 FAULT 6 FAULT 6 FAULT 10 FAULT 10 FAULT 11 FAULT 11 FAULT 12 FAULT 11 FAULT 11 FAULT 12 FAULT 11 F

Job No: 04-803S-4 Table D2.37

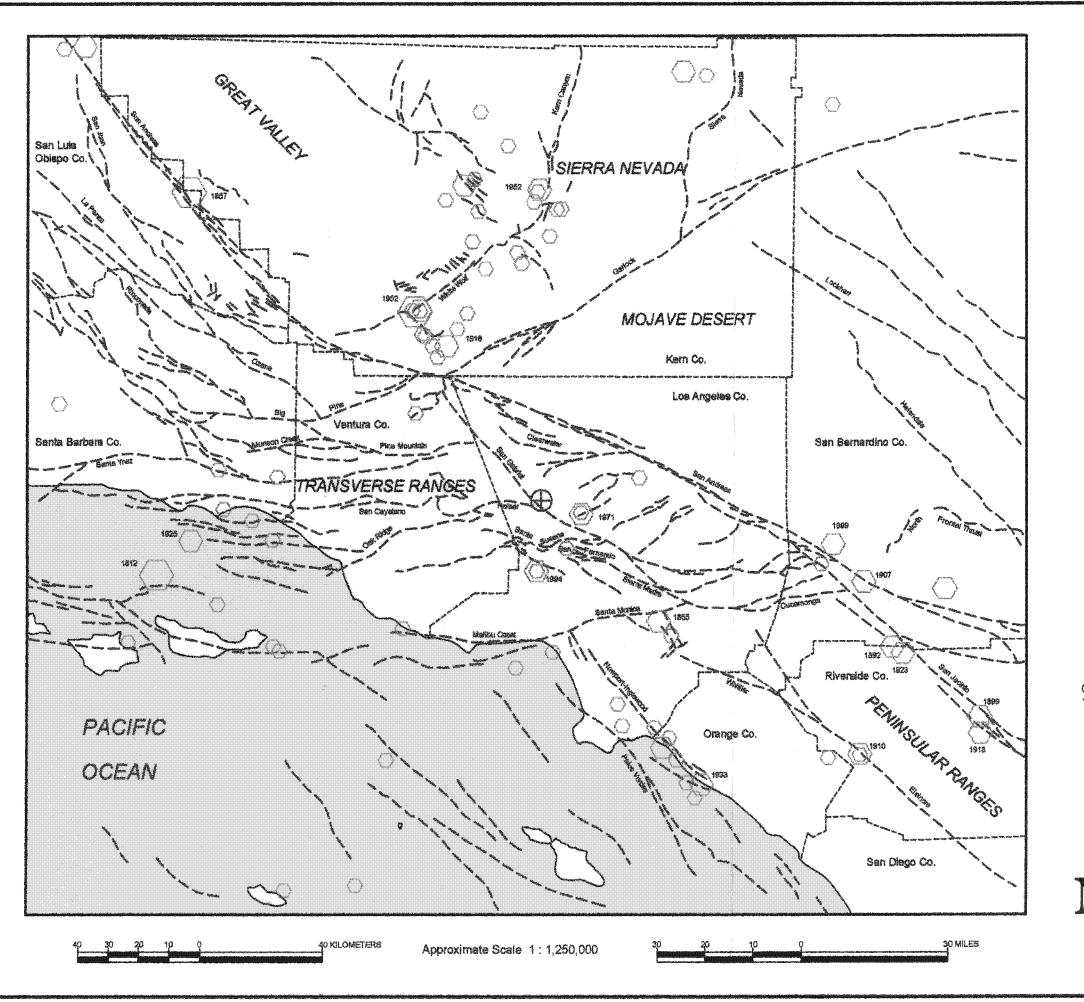
NO.	FAULT NAME	CD_1DRP	CD_2DRP	CDIST	CLODIS	CD_EPI	CD_HYPO	
1 SAN GABRIEL	RIEL	2.5	2.5	2.5	2.5	2.5	3.1 k	kт
2 HOLSER		5.0	5.0	5.0	5.0	6.1	6.2 k	km
3 NORTHRI	NORTHRIDGE (E. Oak Ridge)	11.3	11.3	12.4	12.4	12.1	13.4 k	ĸ
4 SANTA SUSANA	USANA	11.9	2.7	8.6	8.6	3.6	9.8 k	km
5 SIERRA	SIERRA MADRE (San Fernando)	14.4	2.4	10.3	10.3	3.7	10.5 k	KII.
6 VERDUGO		20.2	16.5	18.4	18.4	17.6	19.4 k	кш
7 OAK RID	OAK RIDGE (Onshore)	21.1	21.1	21.1	21.1	22.2	22.3 k	kш
8 SAN CAYETANO	ETANO	24.3	24.3	24.3	24.3	25.6	25.6 k	кщ
9 SIERRA MADRE	MADRE	25.3	19.0	22.1	22.1	20.2	23.0 k	ĸ
10 SAN AND	SAN ANDREAS - Mojave	26.8	26.8	26.8	26.8	26.8	26.9 k	М
11 SAN AND	SAN ANDREAS - 1857 Rupture	26.8	26.8	26.8	26.8	26.8	26.9 k	μ¥
12 SAN AND	SAN ANDREAS - Carrizo	30.0	30.0	30.0	30.0	30.4	30.4 k	km
13 SIMI-SA	SIMI-SANTA ROSA	31.8	31.3	31.8	31.8	32.4	32.9 k	ᄺ
14 HOLLYWOOD	OD	38.7	33.8	36.3	36.3	34.2	36.3 k	滿
15 SANTA MONICA	ONICA	39.7	36.5	38.5	38.5	37.2	38.9 k	ᄣ
16 SANTA Y	SANTA YNEZ (East)	41.3	39.8	41.0	41.0	40.7	41.8 k	Ж
17 RAYMOND		42.6	39.7	41.5	41.5	40.6	42.1 k	麻
18 MALIBU COAST	COAST	44.7	41.3	43.1	43.1	41.6	43.1 k	뛽
19 NEWPORT	NEWPORT-INGLEWOOD (L.A.Basin)	45.7	45.7	45.7	45.7	46.7	46.7 k	ĸ

EXPLANATION

⁼ Closest distance to projection of rupture area along fault trace. = Closest distance to surface projection of the rupture area. = Closest distance to seismogenic rupture. = Closest distance to subsurface rupture. = Closest epicentral distance. = Closest hypocentral distance. CD_IDRP CD_ZDRP CDIST CLODIS CD_EPI CD_HYPO

Job No: 04-803S-4 Table D3

APPENDIX D


SUMMARY OF CALCULATED ACCELERATIONS

Unweighted Accelerations (g)

A 44 - Polytica District	Return Period Evaluated						
Attenuation Relationship	72	100	200	475	1000		
Boore et al. (1997)	0.43703	0.50321	0.64837	0.84727	1.03163		
Sadigh et al. (1997)	0.34500	0.39494	0.50140	0.64078	0.76910		
Campbell & Bozorgnia (1997)	0.36692	0.41391	0.50882	0.62515	0.72680		
Average	0.38	0.44	0.55	0.70	0.84		

Accelerations (g) Weighted for a 7.5 Magnitude

Add and Dalaticalis	Return Period Evaluated							
Attenuation Relationship	72	100	200	475	1000			
Boore et al. (1997)	0.30766	0.35218	0.45637	0.59860	0.72843			
Sadigh et al. (1997)	0.23972	0.27369	0.34618	0.44254	0.53047			
Campbell & Bozorgnia (1997)	0.25982	0.29829	0.36553	0.45351	0.53041			
Average	0.27	0.31	0.39	0.50	0.60			

EXPLANATION

APPROXIMATE LOCATION OF MAJOR KNOWN FAULTS

EARTHQUAKE EPICENTERS

5.0 - 5.9 6.0 - 6.9 7.0 - 7.9

APPROXIMATE LOCATION OF SUBJECT SITE

Compiled and modified from: Jennings (1994), Real et al. (1978), Yerkes (1985), Ziony and Jones (1989), and Shakal et al. (1994)

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.
Geological and Geotechnical Consultants

FAULT AND EARTHQUAKE **EPICENTER LOCATION MAP**

Job No.: 04-803S-4

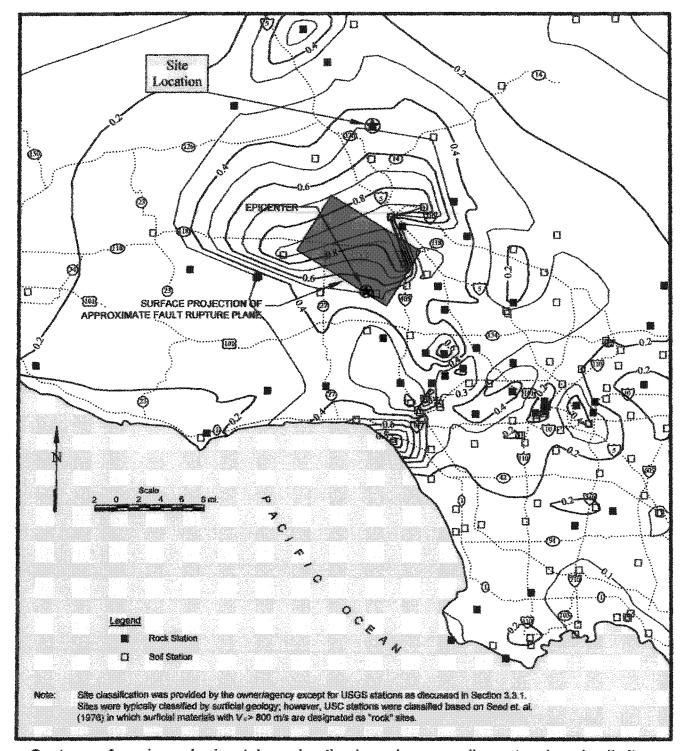
Date: 6/11/04

MODIFIED MERCALLI SCALE, 1956 VERSION *

	Intensity	Effects	v† cm/s	g‡
Μ§	I.	Not felt. Marginal and long-period effects of large earthquakes(for details see text).		
3	II.	Felt by persons at rest, on upper floors, or favorably placed.		
	III.	Felt indoors. Hanging objects swing. Vibration like passing of light trucks. Duration estimated. May not be recognized as an earthquake.		0.0035-0.007
4	IV.	Hanging objects swing. Vibration like passing of heavy trucks; or sensation of a jolt like a heavy ball striking the walls. Standing motor cars rock. Windows, dishes, doors rattle. Glasses clink. Crockery clashes. In the upper range of wooden walls walls and frame creak.		0.007-0.015
	V.	Felt outdoors: direction estimated. Sleepers wakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.	1-3	0.015-0.035
5	VI.	Felt by all. Many frightened and run outdoors. Persons walk unsteadily. Windows, dishes, glassware broken. Kinickkacks, books, etc., off shelves. Pictures off walls. Furniture moved or overturned. Weak plaster and masonry D cracked. Small bells ring (church or school). Trees, bushes shaken (visibly, or heard to rustle - CFR).	3-7	0.035-0.07
6	VII.	Difficult to stand. Noticed by drivers of motor cars. Hanging objects quiver. Furniture broken. Damage to masonry D, including cracks. Weak chimneys broken at roof line. Fall of plaster, loose bricks, stones, tiles, cornices (also unbraced parapets and architectural ornaments - CFR). Some cracks in masonry C. Waves on ponds; water turbid with mud. Small slides and caving in along sand or gravel banks. Large bells ring. Concrete irrigation ditches damaged.	7-20	0.07-0.15
	VIII.	Steering from motor cars affected. Damage to masonry C; partial collaspe. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks, Frame houses moved on foundations if not bolted down, loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.	20-60	0.15-0.35
7	IX.	General panic. Masonry D destroyed; masonry C heavely damaged, sometimes with complete collaspe; masonry B seriously damaged. (General damage to foundations - CFR.) Frame structures, if not bolted, shifted off foundations. Frames rocked. Serious damage to reserviors. Underground pipes broken. Conspicuous cracks in ground. In alluviated areas sand and mud ejected, earthquake fountains, sand craters.	60-200	0.35-0.7
3	X.	Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails slightly bent.	200-500	0.7-1.2
	XI.	Rails bent greatly. Underground pipelines completely out of service		>1.2
	XII.	Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.	From Fig.	11.14

NOTE: Masonry A, B, C, D. To avoid ambiguity of language, the quality of masonry, brick or otherwise, is specified by the following lettering (which has no connection to the conventional Class A, B, C construction).

- Masonry A: Good workmanship, mortar, and design; reinforced, especially laterally, and bound together by using steel, concrete, etc.; designed to resist lateral forces.
- Masonry B: Good workmanship and mortar; reinforced, but not designed to resist lateral forces.
- Masonry C: Ordinary workmanship and mortar; no extreme weaknesses such as non-tied-in corners, but masonry is neither reinforced nor designed against horizontal forces.
- Masonry D: Weak materials, such as adobe; poor mortar; low standard of workmanship; weak horizontally.
- * From Richter (1958). Adapted with permission of W.H. Freeman and Company.
- † Average peak ground velocity, cm/s.
- ‡ Average peak acceleration (away from source).
- § Magnitude correlation.


ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Geological and Geotechnical Consultants

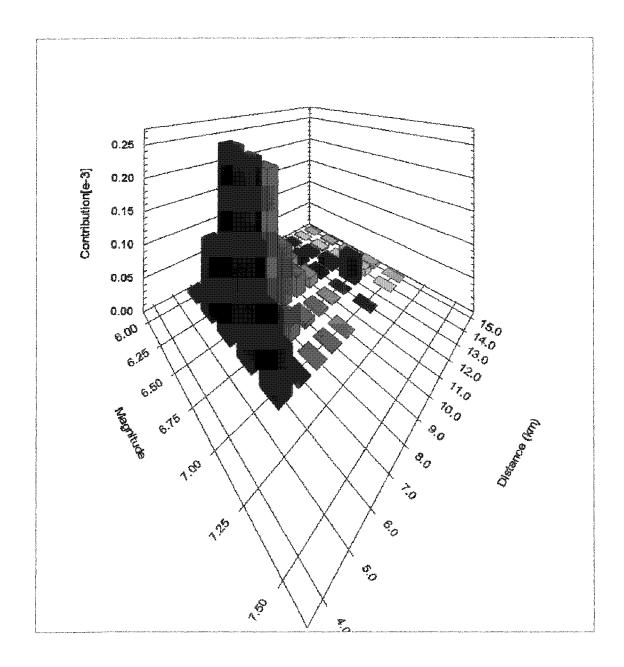
MODIFIED MERCALLI SCALE

Job No.: 04-803S-4

Date: 6/11/04

Contours of maximum horizontal acceleration based on recordings at rock and soil sites during the January 17, 1994 Northridge Earthquake

(Figure modified from Stewart et al., 1994)


ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Geological and Geotechnical Consultants

NORTHRIDGE EARTHQUAKE ACCELERATIONS

Job No.: 04-803S-4

Date: 6/11/04

An earthquake with a magnitude of 6.5 and a distance of 6 km from the hypocenter is the most significant contributor to the hazard for the DBA (10% in 50 years)

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Geological and Geotechnical Consultants

MAGNITUDE/DISTANCE DEAGGREGATION OF HAZARD

Job No.: 04-803S-4

Date: 6/11/04

Appendix E

RECOMMENDED EARTHWORK SPECIFICATIONS

The following specifications are recommended to provide a basis for quality control during the placement of compacted fill or backfill as applicable.

- 1. Areas that are to receive compacted fill shall be observed by Allan E. Seward Engineering Geology, Inc. (AESEGI) prior to the placement of fill.
- 2. All drainage devices shall be properly installed and observed by AESEGI and/or owner's representative(s) prior to placement of backfill.
- 3. Fill soils shall consist of imported soils or on-site soils free of organics, cobbles, and deleterious material provided each material is approved by AESEGI. AESEGI shall evaluate and/or test the import material for its conformance with the report recommendations prior to its delivery to the site. The contractor shall notify AESEGI 72 hours prior to importing material to the site.
- 4. Fill shall be placed in controlled layers (lifts), the thickness of which is compatible with the type of compaction equipment used. The fill materials shall be brought to optimum moisture content or above, thoroughly mixed during spreading to obtain a near uniform moisture condition and uniform blend of materials, and then placed in layers with a thickness (loose) not exceeding 8 inches. Each layer shall be compacted to a minimum compaction of 90% relative to the maximum dry density determined per the latest ASTM D1557 test. Density testing shall be performed by AESEGI to verify relative compaction. The contractor shall provide proper access and level areas for testing.
- 5. Rocks or rock fragments less than eight (8) inches in the largest dimension may be utilized in the fill, provided they are not placed in concentrated pockets, except rocks larger than four (4) inches shall not be placed within three (3) feet of finish grade.
 - Rocks greater than eight (8) inches in largest dimension shall be taken offsite, or placed in accordance with the recommendation of the Soils Engineer in areas designated as suitable for rock disposal.
- 6. Where space limitations do not allow for conventional fill compaction operations, special backfill materials and procedures may be required. Pea gravel or other select

Job No: 04-803S-4

fill can be used in areas of limited space. A sand and portland cement slurry (2 sacks per cubic-yard mix) shall be used in limited space areas for shallow backfill near final pad grade, and pea gravel shall be placed in deeper backfill near drainage systems.

- 7. AESEGI shall observe the placement of fill and conduct in-place field density tests on the compacted fill to check for adequate moisture content and the required relative compaction. Where less than specified relative compaction is indicated, additional compacting effort shall be applied and the soil moisture conditioned as necessary until adequate relative compaction is attained.
- 8. The Contractor shall comply with the minimum relative compaction out to the finish slope face of fill slopes, buttresses, and stabilization fills as set forth in the specifications for compacted fill. This may be achieved by overbuilding the slope and cutting back as necessary.
- 9. Any abandoned underground structures such as cesspools, cisterns, mining shafts, tunnels, septic tanks, wells, pipelines or others not discovered prior to grading are to be removed or treated to the satisfaction of the Soils Engineer and/or the controlling agency for the project.
- 10. The Contractor shall have suitable and sufficient equipment during a particular operation to handle the volume of fill being placed. When necessary, fill placement equipment shall be shut down temporarily in order to permit proper compaction of fills, correction of deficient areas, or to facilitate required field testing.
- 11. The Contractor shall be responsible for the satisfactory completion of all earthwork in accordance with the project plans and specifications.
- 12. Final reports shall be submitted after completion of earthwork and after the Soils Engineer and Engineering Geologist have finished their observations of the work. No additional excavation or filling shall be performed without prior notification to the Soils Engineer and/or Engineering Geologist.
- 13. Whenever the words "supervision", "inspection" or "control" are used, they shall mean <u>observation</u> of the work and/or testing of the compacted fill by AESEGI to assess whether substantial compliance with plans, specifications and design concepts has been achieved, and does not include direction of the actual work of the contractor or the contractor's workmen.

Job No: 04-803S-4

RECOMMENDED SPECIFICATIONS FOR PLACEMENT OF TRENCH BACKFILL

- 1. Trench excavations to receive backfill shall be free of trash, debris or other unsatisfactory materials prior to backfill placement, and shall be observed by Allan E. Seward Engineering Geology, Inc. (AESEGI) representative.
- 2. Except as stipulated herein, soils obtained from the excavation may be used as backfill if they are essentially free of organics and deleterious materials.
 - Rocks generated from the trench excavation not exceeding three (3) inches in largest dimension may be used as backfill material. However, such material may not be placed within 12 inches of the top of the pipeline. No more than 30 percent of the backfill volume shall contain particles larger than 1 ½ inches in diameter, and rocks shall be well mixed with finer soil.
- 3. Soils (other than aggregates) with a Sand Equivalent (SE) greater than or equal to 30, as determined by ASTM D 2419 Standard Test Method or at the discretion of the engineer or representative in the field, may be used for bedding and shading material in the pipe zone areas. These soils are considered satisfactory for compaction by jetting procedures.
- 4. No jetting will be permitted in utility trenches within the top 2 feet of the subgrade of concrete slabs-on-grade.
- 5. Trench backfill other than bedding and shading shall be compacted by mechanical methods as tamping sheepsfoot, vibrating or pneumatic rollers or other mechanical tampers to achieve the density specified herein. The backfill materials shall be brought to optimum moisture content or above, thoroughly mixed during spreading to obtain a near uniform moisture condition and uniform blend of materials, and then placed in horizontal layers with a thickness (loose) not exceeding 8 inches. Trench backfills shall be compacted to a minimum compaction of 90 percent relative to the maximum dry density determined per the latest ASTM D1557 test.
- 6. The contractor shall select the equipment and process to be used to achieve the specified density without damage to the pipeline, the adjacent ground, existing improvements or completed work.

Job No: 04-803S-4

- 7. Observations and field tests shall be carried on during construction by AESEGI to confirm that the required degree of compaction has been obtained. Where compaction is less than that specified, additional compaction effort shall be made with adjustment of the moisture content as necessary until the specified compaction is obtained. Field density tests may be omitted at the discretion of the engineer or his representative in the field.
- 8. Whenever, in the opinion of AESEGI or the Owner's Representative(s), an unstable condition is being created, either by cutting or filling, the work shall not proceed until an investigation has been made and the excavation plan revised, if deemed necessary.
- 9. Fill material shall not be placed, spread, or rolled during unfavorable weather conditions. When the work is interrupted by heavy rain, fill operations shall not be resumed until field tests by AES indicate the moisture content and density of the fill are as specified.
- 10. Whenever the words "supervision", "inspection", or "control" are used, they shall mean <u>observation</u> of the work and/or testing of the compacted fill by AESEGI to assess whether substantial compliance with plans, specifications and design concepts has been achieved.

Job No: 04-803S-4

DRAINAGE AND EROSION CONTROL RECOMMENDATIONS

Slopes and pads on this project were designed to direct surficial runoff away from structures and reduce water-induced surficial erosion/sloughing. Permanent erosion control measures should be initiated immediately following completion of grading. All constructed slopes will undergo some erosion when subjected to sustained water influx. To maintain appropriate long-term drainage and erosion control, the following points should be considered in slope protection, landscaping, irrigation and modifications to slopes, pads and structures:

- 1. All interceptor ditches, drainage terraces, down-drains and any other drainage devices should be maintained and kept clear of debris. A qualified Engineer should review any proposed additions or revisions to these systems, to evaluate their impact on slope erosion.
- 2. Retaining walls should have adequate freeboard to provide a catchment area for minor slope erosion. Periodic inspection, and if necessary, cleanout of deposited soil and debris should be performed; particularly during and after periods of rainfall.
- 3. The future developers should be made aware of the **potential problems**, which may develop **when drainage is altered** through landscaping and/or construction of retaining walls, and paved walkways. Ponded water, water directed over slope faces, leaking irrigation systems, **overwatering** or other conditions which could lead to excessive soil moisture, **must be avoided**.
- 4. Slope surficial soils may be subject to water-induced mass erosion. Therefore, a suitable proportion of slope planting should have root systems, which will develop well below three feet. We suggest consideration of drought-resistant shrubs and low trees for this purpose. Intervening areas can then be planted with lightweight surface plants with shallower root systems. All plants should be lightweight and require low moisture. Any loose slough generated during the process of planting should be properly removed from the slope face(s).
- 5. Construction delays, climate/weather conditions, and plant growth rates may be such that additional short-term, nonplant erosion control measures may be needed; examples would be matting, netting, plastic sheets, deep (5-feet) staking, etc.

Job No: 04-803S-4

- 6. Major erosion can be initiated by seemingly insignificant events; rodent burrowing, human trespass (footprints, etc.), small concentrations of uncontrolled surface/subsurface water; or poor compaction of utility trench backfill on slopes.
- 7. High and/or fluctuating water content in slope materials is a major factor in slope erosion and/or slope failures. Therefore, all possible precautions should be taken to maintain a moderate and uniform soil moisture. Slope irrigation systems should be properly operated and maintained and system controls should be placed under strict control.

EROSION CONTROL REFERENCES

- 1. "Slope Protection for Residential Developments", National Academy of Sciences, Washington D.C. (1969).
- 2. "Guide for Erosion and Debris Control in Hillside Areas", Department of Building and Safety, City of Los Angeles. (1970).
- 3. "Slope Stability Report", Orange County Department of Building and Safety (1973).
- 4. "Guides for Erosion and Sediment Control", Soil Conservation Service, Davis, California, U.S. Department of Agriculture (1977).
- 5. "Rain-Care and Protection of Hillside Homes", brochure undated, published by Building and Safety Division, Los Angeles County Engineer.
- 6. "Guidelines for Erosion and Sediment Control Planning and Implementation: Office of Research and Monitoring", U.S. Environmental Protection Agency (1972).
- 7. "Resource Conservation Glossary", Soil Conservation Society of America (1970).
- 8. "Standards and Specifications for Soil Erosion and Sediment Control Developing Areas", Soil Conservation Service, U.S. Department of Agriculture (1975).
- 9. "Homeowners Guide for Debris and Erosion Control", Los Angeles County Flood Control District (undated).

Job No: 04-803S-4

- 10. "Grading Guidelines (8 pages, stapled sheets)", Building and Safety Division, Department of County Engineer, County of Los Angeles (undated, but probably about 1977).
- 11. "Biotechnical Slope Protection and Erosion Control", Donald H. Gray and Andrew T. Leiser, Robert E. Krieger Publishing Company, Malabuv, Florida, 1989.

Job No: 04-803S-4

Job No: 04-803S-4 Page E8

APPENDIX E

CONSTRUCTION DIAGRAMS

Schematic Alluvial/Slopewash Detail	Figure E1
Fill Over Natural Slope	Figure E2
Cut Lot (Transitional) and Cut-Fill Lot (Transitional)	Figure E3
Rock Disposal Windrows	Figure E4
Fill Slope Over Natural Slope	Figure E5
Fill Slope Toeing Out on Flat Alluviated Canyon	Figure E6
Stability/Buttress Fill and Backdrain Detail	Figure E7
Typical Fill Above Cut slope	Figure E8
Subdrain Detail	Figure E9
Debris Flow Hazard Control Devices	Figure E10
Typical Canyon Subdrain Outlet	Figure E11
Fill Slope Compaction Requirements	Figure E12
Retaining Wall Drainage Detail	Figure E 13

Job No: 04-803S-4 Table E1.1

MINIMUM FOUNDATION AND SLAB RECOMMENDATIONS FOR EXPANSIVE SOILS (ONE-, TWO-, AND THREE-STORY BUILDINGS)

Minimum Residential Footing Recommendations

EXPANSION	EXPANSION	F	OOTING DEF	CONTINUOUS			
CLASSIFICATION	INDEX	ONE ANI		THREES	TORIES	FOOTING REINFORCEMENT	
(UBC)	(UBC)	PERIMETER	INTERIOR	PERIMETER	INTERIOR		
Very Low	0 to 20	18	12	24	18	Two # 4 Rebars Top and Bottom	
Low	21 to 50	18	12	24	18	Two # 4 Rebars Top and Bottom	
Medium	51 to 90	24	18	30	24	Four # 4 Rebars Two Top and Two Bottom	
High	91 to 130	30	18	36	30	Four # 4 Rebars Two Top and Two Bottom	

- Minimum footing widths: 12 inches (one-story); 15 inches (two-story); 18 inches (three-story); 24 inches for individual columns.
- All footing depths are measured below lowest adjacent final grade.
- The base of the garage door grade beam should be at the same elevation as that of the adjoining footings.
- Garage slabs should be isolated from stem wall footings with a minimum 3/8" felt expansion joint.
- Isolated exterior structural column footings should be tied back to the main foundation system in at least two (2) orthogonal directions (conventional foundations only).

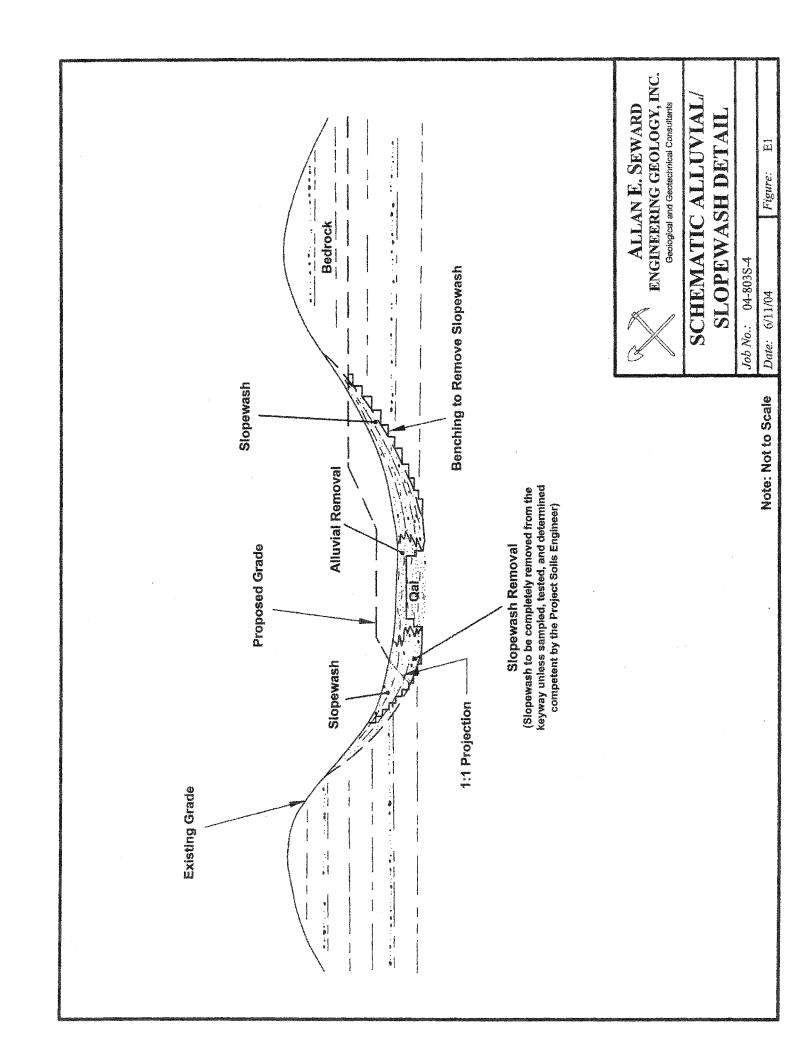
Minimum Residential Slab Recommendations

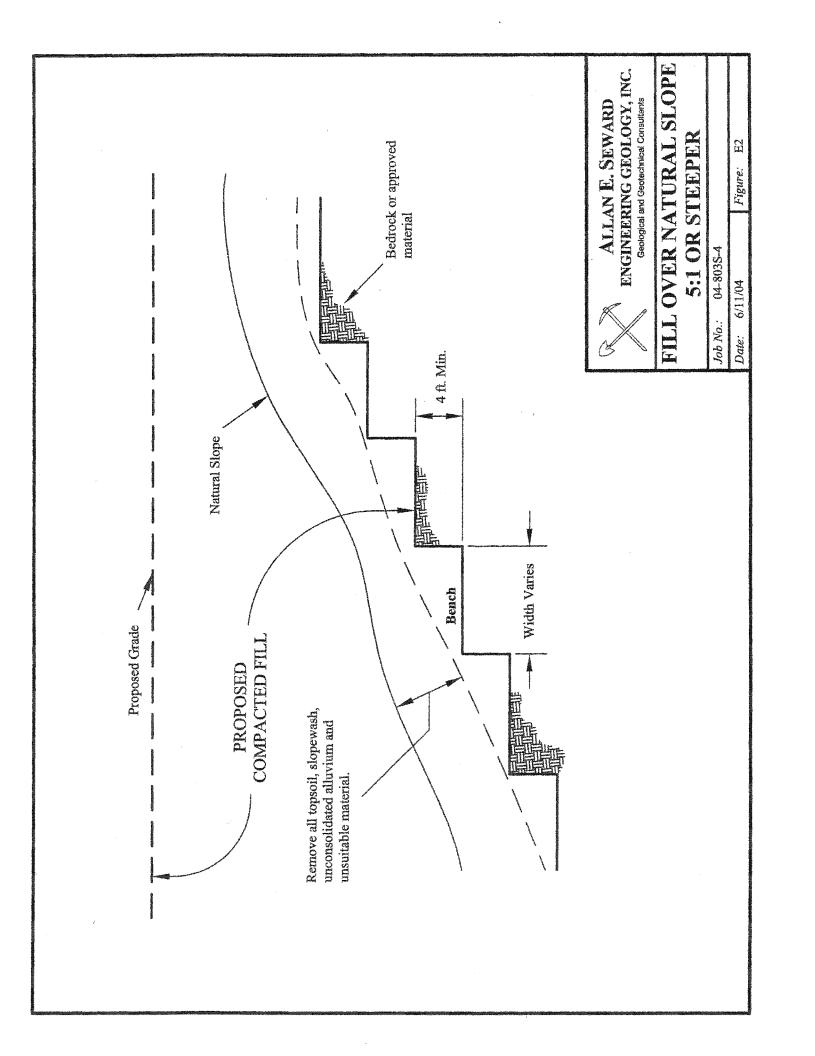
EXPANSION CLASSIFICATION (UBC)	EXPANSION INDEX (UBC)	SLAB SUBGRADE PRESOAKING	SLAB REINFORCEMENT	MINIMUM SLAB THICKNESS (REF: PCA)	SAND LAYER BELOW 10 MIL VISQUEEN
Very Low	0 to 20	None	#3 Rebar at 24" each way	4 inches	2 inches
Low	21 to 50	120 percent of optimum moisture content ¹ to 18 inches depth	#3 Rebar at 18" each way		
Medium	51 to 90	130 percent of optimum moisture content to 18 inches depth	#4 Rebar at 16" each way	5 inches	4 inches
High	91 to 130	140 percent of optimum moisture content to 24 inches depth	#4 Rebar at 14" each way	6 inches	6 inches

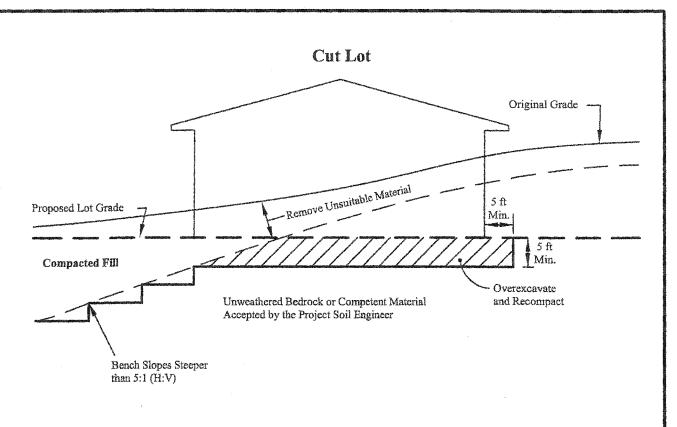
Concrete for floor slabs should conform to the requirements contained in Chapter 19 of the 1997 edition of the Uniform Building Code.

Minimum Residential Slab Recommendations continued on back of this page

¹ Optimum moisture content as determined by ASTM D1557 Test Method on subgrade soils.


MINIMUM FOUNDATION AND SLAB RECOMMENDATIONS FOR EXPANSIVE SOILS (ONE-, TWO-, AND THREE-STORY BUILDINGS)


Minimum Residential Slab Recommendations (continued from front side of this page)


- Sand base should have a Sand Equivalent of 30 or greater (e.g., washed concrete sand).
- Interior area slabs, except garages may be tied to the footings as directed by the Structural Engineer. For Medium and High Expansion Potential subgrades, dowels of No. 3 bars should be placed at 36 inches on centers in the footings and bent 3 feet into the slab.
- Vapor barrier for slabs-on-grade: A sheet of 10-mil visqueen sandwiched between two, 2-inch
 layers of compacted sand. The vapor barrier must be properly lapped and/or sealed, and sealed
 around all plumbing structures and other openings. Care should be taken to avoid punctures in
 the vapor barrier resulting from sharp objects in the subgrade and/or structures. Equivalents are
 acceptable.
- To reduce moisture intrusion beneath slabs on grade, utility trenches should be backfilled with lean concrete or concrete slurry at foundation perimeters. The plug shall be under the full width of the footing and be extended along a minimum of 24-inch of trench length below the slab.
- Materials from foundation and/or utility trench excavations should not be spread on slab-on-grade areas unless it is compacted and tested.
- Foundation excavations should be observed by a representative of this firm prior to placement of forms, reinforcement, or concrete, to verify that the excavations are embedded to the recommended depth into the recommended material. The excavations should be moistureconditioned and free of all loose or sloughed material prior to placement of concrete.
- Foundations and floor slabs supported on subsoils with an expansion index greater than 130 should be individually engineered based on actual details of the foundation system.

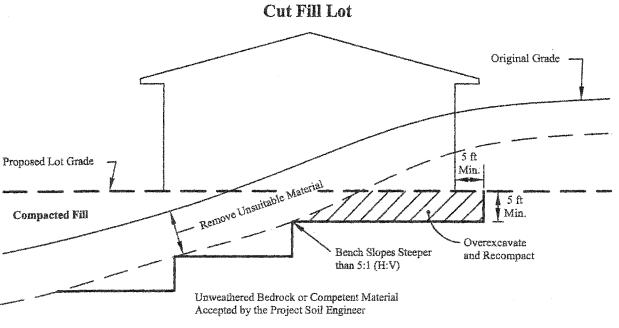

Job No: 04-803S-4

Table E1.2

NOTE: Deeper Overexcavation and/or Additional Foundation Reinforcement may be Required by the Soils Engineer in Steep Cut/Fill Transition Areas (See Text)

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Geological and Geotechnical Consultants

CUT LOT AND CUT FILL LOT(TRANSITIONAL)

Job No.: 04-803S-4

Date: 6/11/04

Figure: I

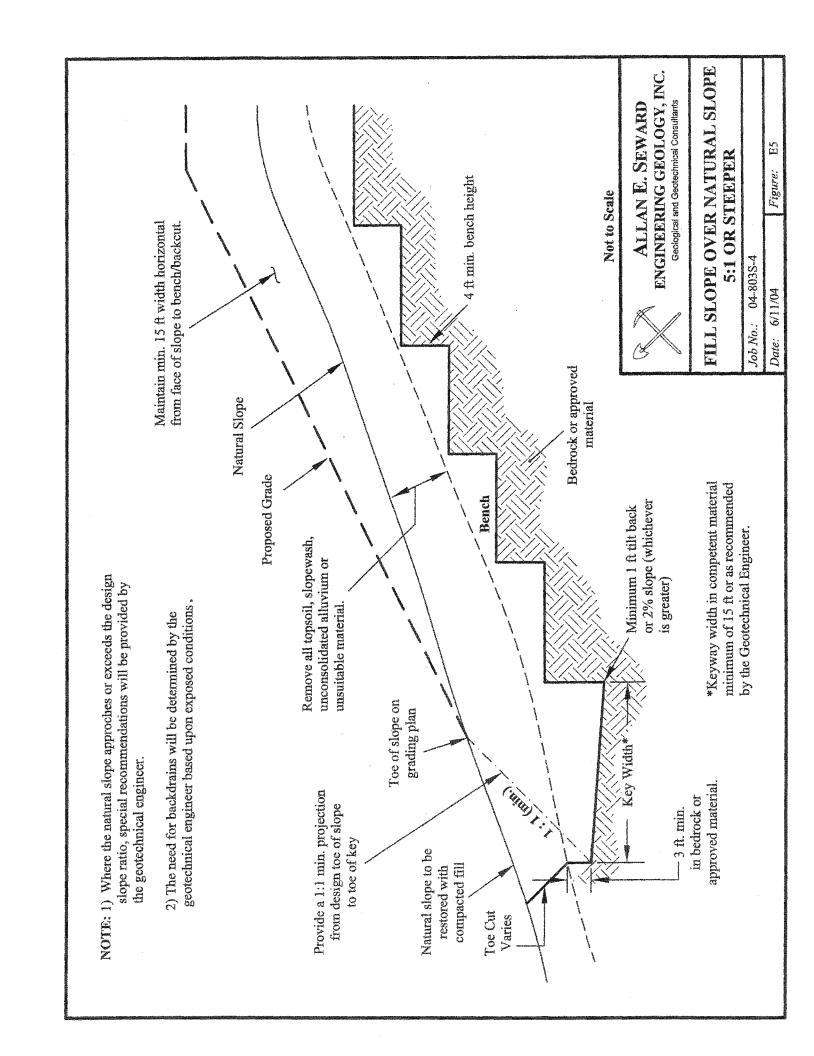
E3

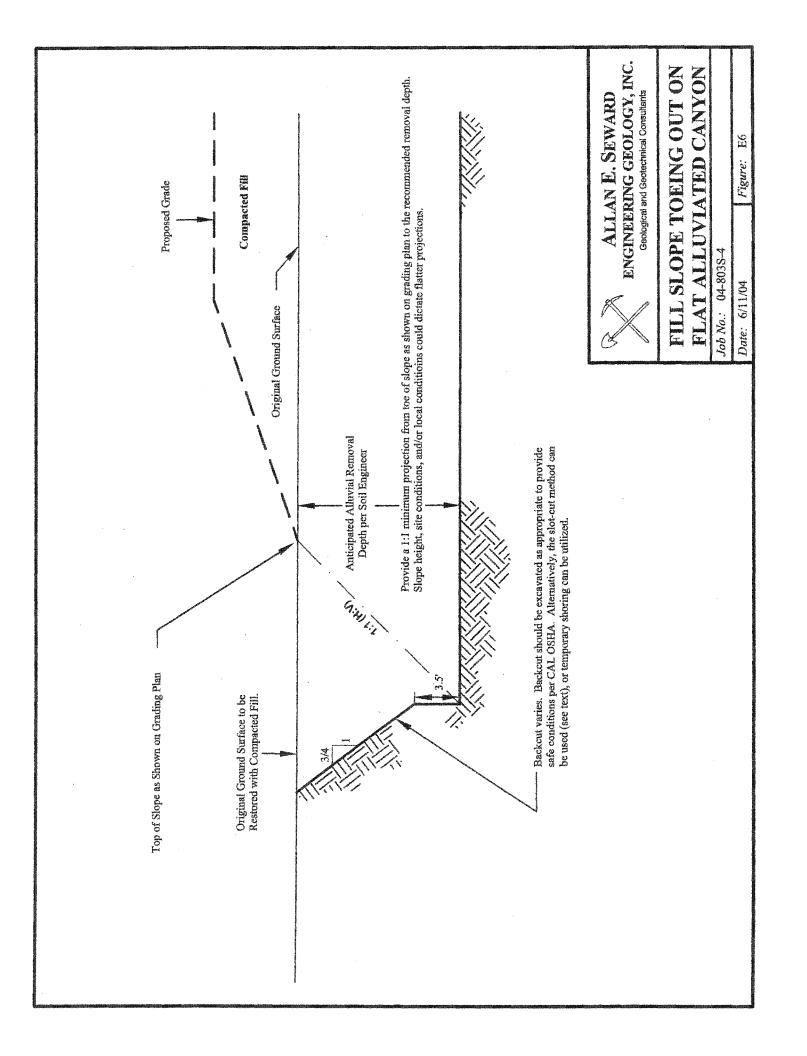
B G A Finished Grade Competent Material or Bedroo or cement sluny to fill voids Granular jetted soil 8

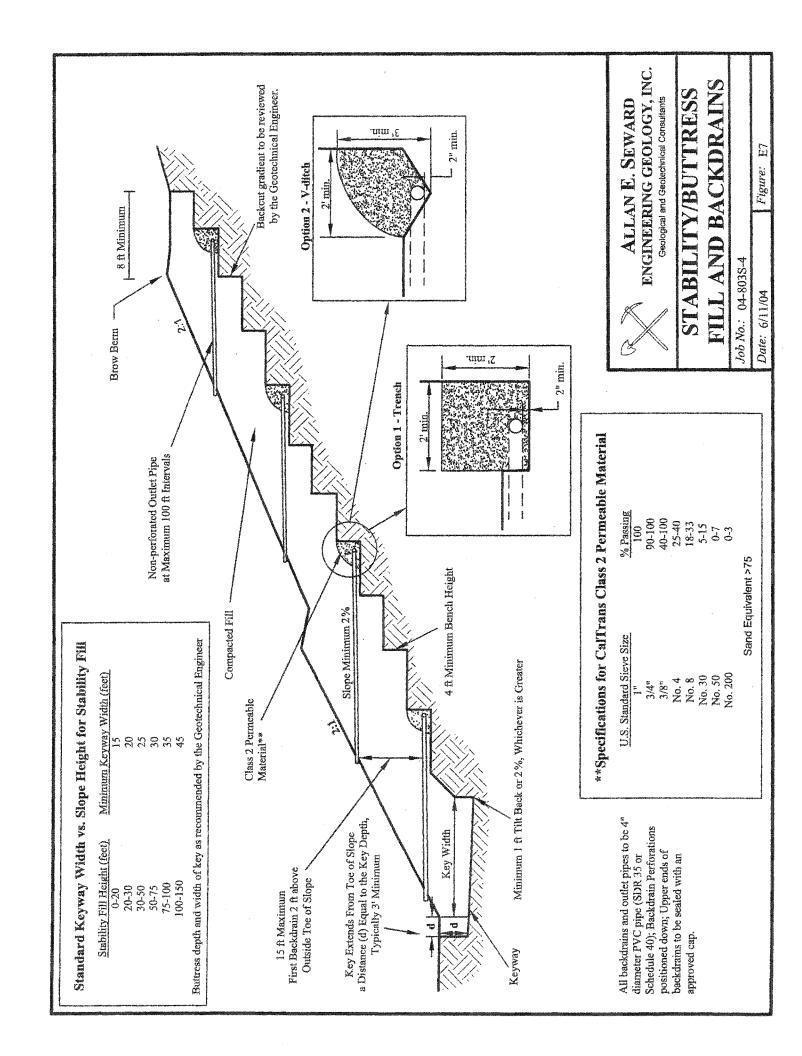
EXPLANATION

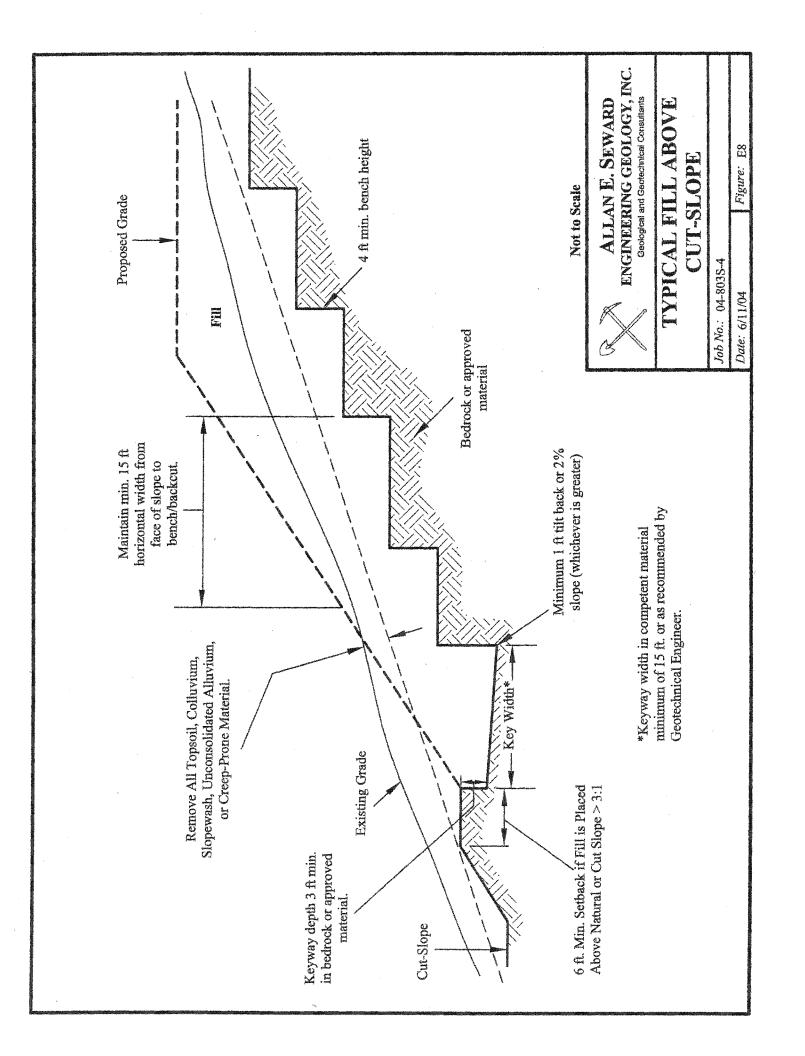
- A) ±4 ft, Height and Width may vary depending on rock size
-) Minimum of 4 ft from stagger windrow
- C) Minimum of 5 ft from first set of windrow to competent material or bedrock
- Minimum of 15 ft between windrows
- E) Minimum of 23 ft from oversized rocks (> 4 ft in its largest dimension) to finished subgrade; all oversized rocks must be individually placed
-) Minimum of 25 ft from projected windrow area to finished subgrade
- 3) Minimum of 15 ft to clear for foundations and pools or 5 ft below the deepest adjacent utility trench, whichever is deepest

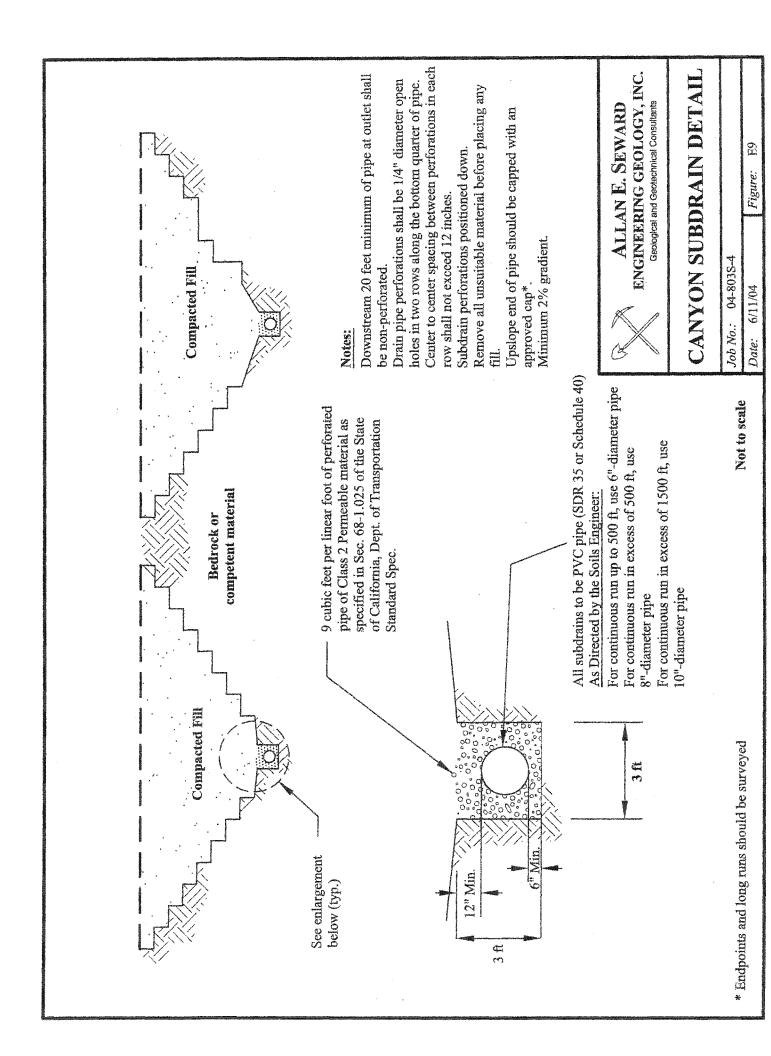
F

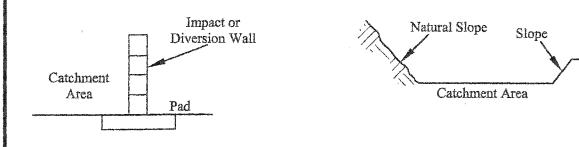

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC. Geological and Geotechnical Consultants

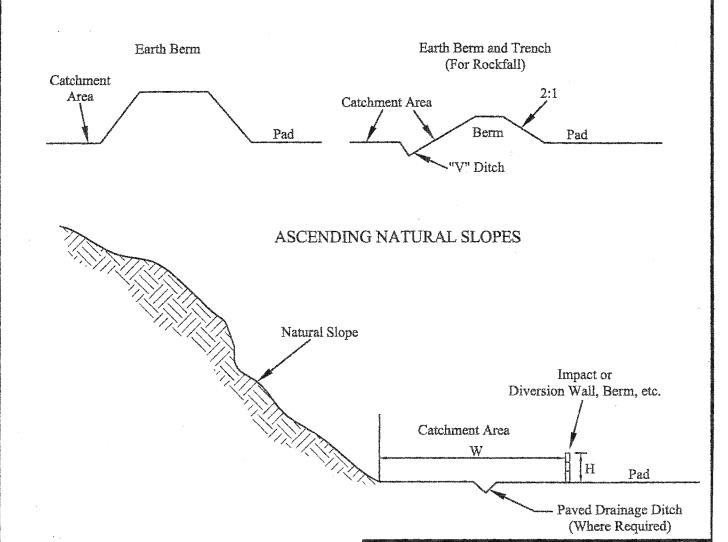

ROCK DISPOSAL (WINDROWS)


Job No.: 04-803S-4


Date: 6/11/04


Figure: E4





NOTE: Not to scale

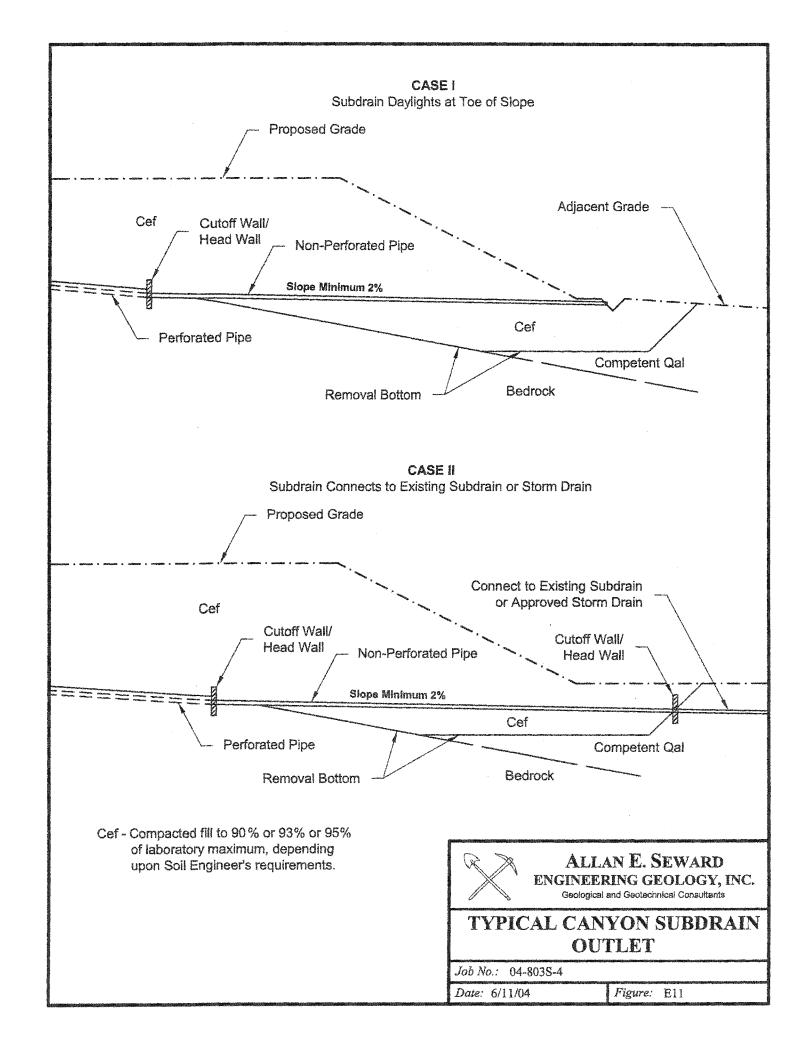
Pad

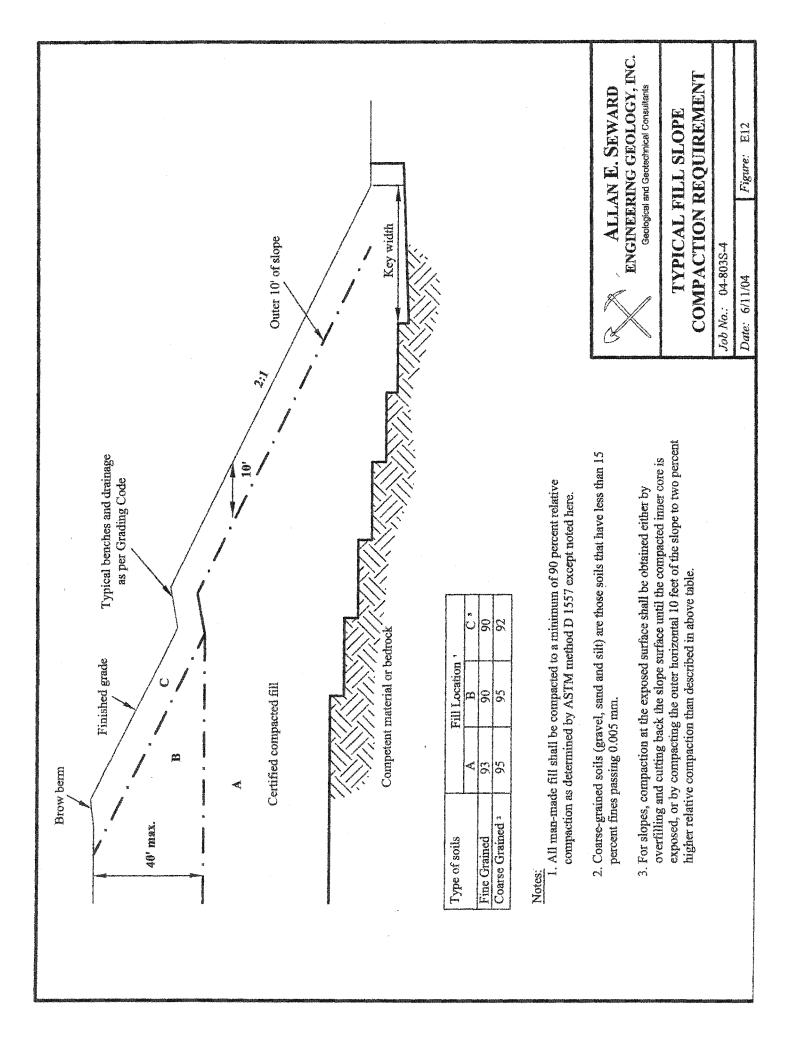
ALTERNATIVE DEBRIS CONTROL DEVICES

NOTE: W and H will vary according to natural slope height, gradient, and material

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Geological and Geotechnical Consultants


DEBRIS FLOW HAZARD CONTROL DEVICES


Job No.: 04-803S-4

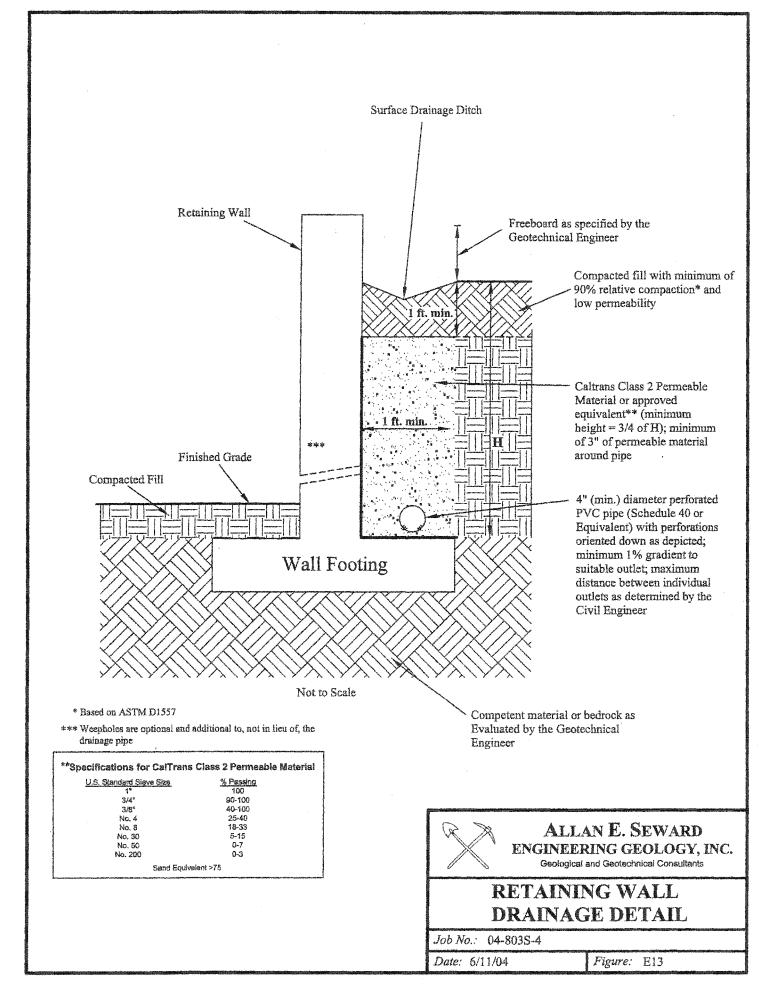

Date: 6/11/04

Figure:

E10

ALLAN E. SEWARD ENGINEERING GEOLOGY, INC.

Geological And Geotechnical Consultants

GEOLOGIC AND GEOTECHNICAL REPORT

Review of Tentative Tract Map (Dated April 1, 2004)

Tentative Tract 60258

The Keystone
City of Santa Clarita, California

VOLUME II OF II

Prepared for:

Synergy, A Land & Development Company 23823 West Valencia Boulevard Valencia, California 91355

> Job No: 04-803S-4 Dated June 11, 2004

Appendix F

SLOPE STABILITY ANALYSES

Introduction

Analyses were performed on several selected cross-sections to evaluate the stability of proposed cut and fill slopes, critical natural slopes proposed to remain adjacent to the development and landslide areas which may impact the proposed development. The stability analyses utilized cross sections constructed to illustrate critical structural geometries and maximum slope heights for each analyzed slope. Our evaluation included gross stability (static and pseudostatic conditions) and surficial stability. Based on our analyses, the need for stabilization measures was explored and dimensional design of these measures was performed, as needed, in a step-by-step fashion utilizing computer-based numerical slope stability analyses. The results of our stability analyses are summarized in **Table F1** along with slope parameters and recommended mitigations. Slope stability diagrams graphically illustrating the results of our analyses for each cross section are attached for review.

Summary of Slope Conditions Analyzed

Natural Slopes

Natural slopes evaluated for this investigation include ridgelines and riverbank areas. Cross Sections 5-5' and 13-13' illustrate the anticipated conditions of critical natural slope areas. Cross Section 3-3' illustrates the anticipated critical conditions where development is proposed above a natural slope area.

Calculated factors of safety and recommended mitigation measures are presented in **Table F1** for review. For general description of the geologic/geotechnical conditions, see Section 9.2.11 within the text portion of the report.

Cut-Slopes

The three dimensional geometry of critical cut-slopes are illustrated on Cross Sections 1-1', 4-4', and 11-11'. The results of our stability analyses of these cross sections are presented in **Table F1**. Mitigation measures including stability fills have been recommended as needed to provide factors of safety which meet City of Santa Clarita standards as summarized in **Table F1**.

Job No: 04-803S-4

Page F1

Fill Slopes

The highest proposed fill slope is 120 feet in height as illustrated on Cross Section 2-2'. This fill slope calculates as grossly stable per City of Santa Clarita standards.

Landslides

Three (3) landslides have been mapped on the subject site in the vicinity of proposed walkways. No proposed structures exist within the area affected by the landslides. Based on future use intended, slope stability analyses was not performed

Surficial Stability

Surficial stability analysis of fill slopes utilizing the "infinite slope" method for this site was performed and is presented in Figures F1.1 through F1.3 within this Appendix. Permanent cut-slopes exposing cut/fill transitions or daylighted bedrock or terrace deposits should be constructed as Stability Fills.

Geometry and Groundwater

As shown on the respective cross sections, the analyzed geometries of cut-slopes and natural slopes included removal of vegetation, topsoil, artificial fill, alluvium, landslide debris and bedrock materials and adding certified compacted fill to achieve the proposed grades, or remedial grades as needed on portions of the slopes. Analyses included cross-bedding based on geologic data obtained near each cross section listed in **Table F1**.

Review of ground water data in the vicinity and trench and boring log data indicates that the proposed cut-slopes in bedrock are above historic high ground water levels. Perched ground water was observed within the terrace deposits and Saugus formation bedrock within our bucket auger borings BA-15, BA-16 and BA-17 at the elevated portions of the site. Where appropriate, ground water was modeled in the slope stability analyses.

Shear Strength Parameters

A total of 4 direct shear strength tests were performed for this project. Individual Direct Shear test results are presented in **Appendix B**. Data used in our analyses are summarized in the below table:

Job No: 04-803S-4

Page F2

Table F2 - Summary of Design Shear Strength Values

Section 1	PEAK		Ultima			
MATERIAL	COMESION (psf)	Рніф	COHESION (psf)	Риф	UNIT WT. (PCF)	
Bedrock (TOs), Cross-Bedding	1700	33°	700	32°	135	
Compacted Fill (Cef)	300	30°	300	30°	130	
Alluvium (Qal)	850	35°	400	33°	130	
Terrace Deposits (Qt)	800	410	400	38°	130	

Based on our subsurface borings and test pits, the site is predominantly coarse-grained. In our analyses, ultimate shear strengths were used for static gross stability and pseudostatic gross stability.

Conclusion

The analyzed cut-slopes, proposed grades, remedial grades and compacted fill slopes comply with City of Santa Clarita Building Code minimum requirements for gross stability under static and pseudostatic loading conditions and for surficial stability, as applicable, provided our recommendations are followed and incorporated into project construction.

The following attachments are located within this Appendix.

Slope Stability Analyses Results
Slope Stability Diagrams and Data Sheets for Runs 1 through 17
Infinite Slope Stability Analyses
Figures F1.1

Figures F1.1 through F1.3

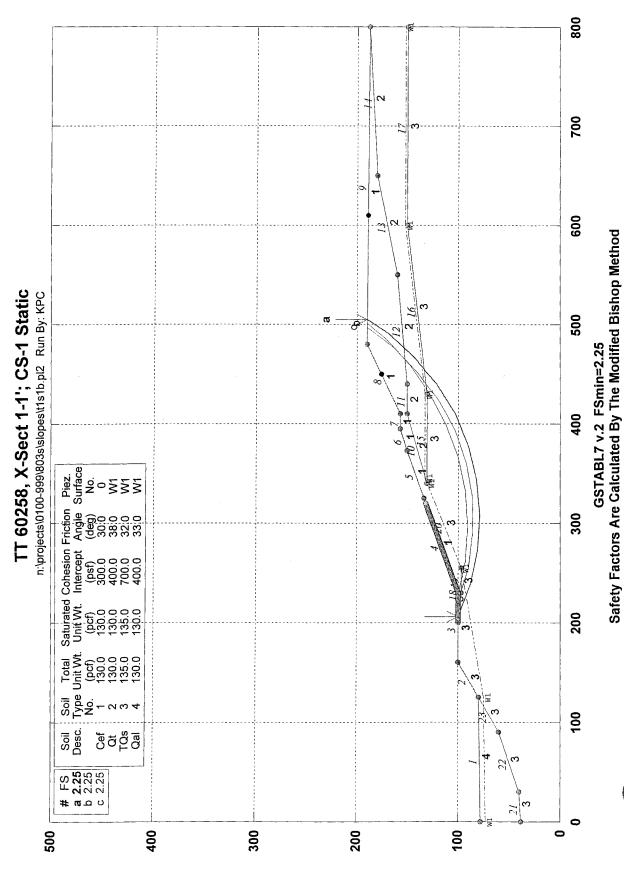
Table F1

Job No: 04-803S-4

Page F3

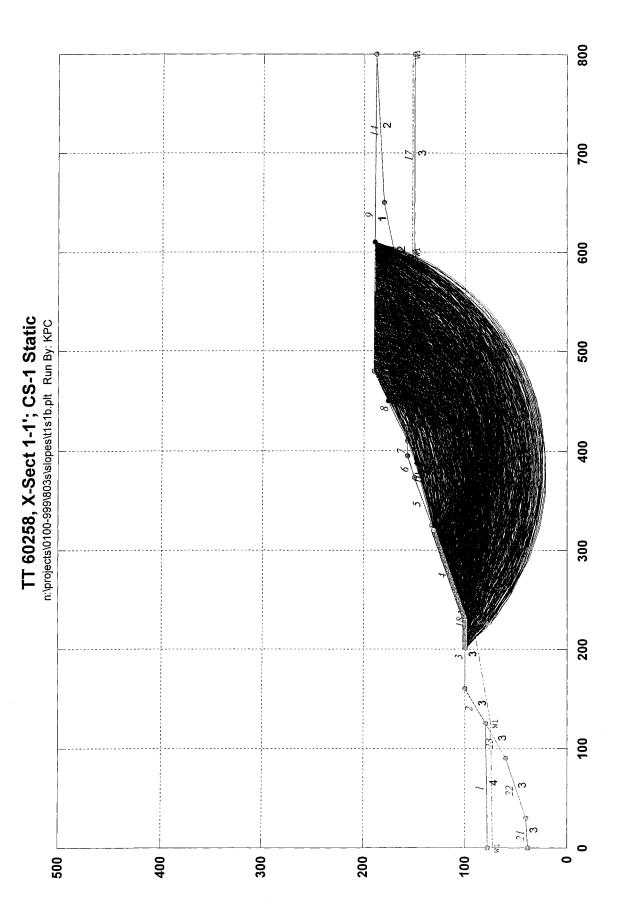
SLOPE STABILITY ANALYSES RESULTS

₹ 5	fana	2	m	4	LO.	9	F	œ	0
COMMENTS	Analyses includes stability fill into Qt, -Search at upper toe area, -Critical factor of safety	Pseudostatic analyses F.S. > 1.1 O.K.	Search at lower toe area, Pseudostatic is not critical and was not performed	Highest fill slope	Pseudostatic analyses F.S > 1.1 O.K.	Analyses include removal of artificial fill	Pseudostatic analyses F.S > 1.1 O.K.	Analyses for cut-slope 4	Pseudostatic analyses F.S > 1.1 O.K.
FACTOR OF SAFETY PSEUDOSTATIC (COEFF = 0.15)		1.49			1.26		1.17		1.32
STATIC	2.25	The state of the s	3.52	82.		Ę		2.18	
METHOD	Bishop	Bishop	Bishop	Bishop	Bishop	Bishop	Bishop	Bishop	Bishop
ANALYZED PLANE	Circular	Creular	Circular	Circular	Circular	Circular	Circular	Circular	Circular
SLOPE	CS-1	-S3	Natural Slope below CS-1	High Fill Slope over Alluvial Canyon	High Fill Slope over Alluvial Canyon	Fill over Natural Slope	Fill over Natural Slope	t-83	CS-4
FILE	T1S18	TIPSIB	TISIA	T2S1A	T2PS1A	T3S1A	T3PS1A	TASTA	TAPS1A
CROSS	ng general general	dimento S diversis	Samen 1 Samen pr	2-2	7-7	3-3,	3-3	\$-\$	4-4


Peak shear strength values were not utilized.

SLOPE STABILITY ANALYSES RESULTS

3 3	2	- 2		₩ ±		ເລ	ထု	Auro Genor
COMMENTS	Analyses for cut-slope 3	Pseudostatic analyses F.S > 1.1 O.K.	After removal of artificial fill at the top of slope	Pseudostatic analyses F.S > 1.1 O.K.	Cut-slope 11 not critical in comparison to cut-slope 12	Pseudostatic analyses F.S > 1.1 O.K.	Off-site slope stability analyses; Steepest natural slope	Pseudostatic analyses F.S > 1.1 O.K.
FACTOR OF SAFETY PSEUDOSTATIC (COEFF = 0.15)		1.66		1.48		1.70		1.30
FAC	2.39	Andrew of the control	961		2,35		89.1	
METHOD	Bishop	Bishop	Bishop	Bishop	Bishop	Bishop	Bishop	Bishop
ANALYZED PLANE	e C	5	Circular	Circular	Creus	Circular	Circular	Circular
SLOPE DESIGNATION	C-S-3	c-so	Natural Slope	Natural Slope	CS-11/CS-12 Slab Fill	CS-11/CS-12 Slab Fill	Steepest Natural Slope	Steepest Natural Slope
FILE	T4S1D	T4PS1D	T5S1A	TSPSIA	50	2	T3S12	TI3PSIA
CROSS		, #-#	5-2í	່ນ	Averges Material Section Economics	Segence Segence Operator Segence	4.2	ž,


The above results for static conditions are based upon site-specific shear strength characteristics tabulated in Table F2. These shear strengths were developed based on the direct shear test results presented on Table B2 of "Summary of Shear Strength Test Data"in Appendix B. Residual shear strength values were used for all existing natural materials under static load. Peak shear strength values were used for bedrock, terrace deposits, landslide debris and recent alluvium for pseudostatic loads and for planned compacted fill under both static and pseudostatic loads.

Geology and Geotechnology

GS.

Run No. 1

*** GSTABL7 ***

```
** GSTABL7 by Garry H. Gregory, P.E. **
  ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
             (All Rights Reserved-Unauthorized Use Prohibited)
************************
                  SLOPE STABILITY ANALYSIS SYSTEM
      Modified Bishop, Simplified Janbu, or GLE Method of Slices.
      (Includes Spencer & Morgenstern-Price Type Analysis)
      Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
      Nonlinear Undrained Shear Strength, Curved Phi Envelope,
      Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
Analysis Run Date:
Time of Run:
Run By:
                        KPC
                        N:\Projects\0100-999\803S\Slopes\t1s1b.in
Input Data Filename:
Output Filename:
                        N:\Projects\0100-999\803S\Slopes\t1s1b.OUT
Unit System:
                        English
Plotted Output Filename: N:\Projects\0100-999\803S\Slopes1b.PLT
PROBLEM DESCRIPTION: TT 60258, X-Sect 1-1'; CS-1 Static
BOUNDARY COORDINATES
   9 Top Boundaries
  23 Total Boundaries
Boundary
           X-Left
                      Y-Left
                               X-Right
                                         Y-Right
                                                    Soil Type
```

(ft)

125.00

(ft)

80.00

Below Bnd

(ft)

0.00

No. 1 (ft)

78.00

```
2
              125.00
                           80.00
                                     160.00
                                                100.00
     3
              160.00
                          100.00
                                     230.00
                                                100.00
                                                               3
              230.00
                          100.00
                                     325.00
                                                133.00
                                                               1
     5
              325.00
                          133.00
                                     373.00
                                                150.00
                                                               1
     6
              373.00
                          150.00
                                     395.00
                                                157.00
                                                               1
              395.00
                                                157.00
                          157.00
                                     410.00
                                                               1
     8
              410.00
                          157.00
                                     480.00
                                                190.00
                                                               1
     9
              480.00
                                     800.00
                          190.00
                                                188.00
                                                               1
              340.12
                          130.00
                                     410.00
    10
                                                150.00
                                                               2
    11
              410.00
                          150.00
                                     440.00
                                                150.00
                                                               2
    12
              440.00
                          150.00
                                     550.00
                                                160.00
                                                               2
    13
              550.00
                          160.00
                                     650.00
                                                180.00
                                                               2
                                     800.00
              650.00
                                                               2
    14
                          180.00
                                                188.00
    15
              340.12
                          130.00
                                     430.00
                                                130.00
                                                               3
                                     600.00
                                                               3
    16
              430.00
                          130.00
                                                150.00
              600.00
                                     800.00
                                                150.00
                                                               3
    17
                          150.00
              230.00
                          100.00
                                     230.10
                                                 97.00
                                                               3
    18
                           97.00
                                                 97.00
                                                               3
    19
              230.10
                                     255.00
    20
              255.00
                           97.00
                                     340.12
                                                130.00
                                                               3
                0.00
                           38.00
                                      30.00
                                                 40.00
    21
               30.00
                           40.00
                                      90.00
                                                 60.00
                                                               3
    22
    23
               90.00
                           60.00
                                     125.00
                                                 80.00
 Default Y-Origin = 0.00(ft)
Default X-Plus Value = 0.00(ft)
 Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
 4 Type(s) of Soil
 Soil Total Saturated Cohesion Friction
                                              Pore
                                                     Pressure
                                                                 Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
                                     (deg)
      (pcf)
                (pcf)
                           (psf)
                                             Param.
                                                                  No.
                                                        (psf)
 No.
                130.0
                           300.0
                                     30.0
                                             0.00
                                                                  0
  1
       130.0
                                                         0.0
                130.0
                           400.0
                                     38.0
                                             0.00
                                                         0.0
                                                                  1
   2
       130.0
   3
      135.0
                135.0
                          700.0
                                     32.0
                                             0.00
                                                         0.0
                                                                  1
                130.0
                           400.0
                                     33.0
                                             0.00
                                                         0.0
                                                                  1
       130.0
1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 8 Coordinate Points
Pore Pressure Inclination Factor = 0.50
             X-Water
                          Y-Water
   Point
   No.
                (ft)
                             (ft)
                0.00
                           73.00
    1
              125.00
    2
                           75.00
    3
              255.00
                           97.00
              340.00
                          130.00
    4
     5
              345.00
                          132.00
     6
              430.00
                          132.00
              600.00
                          152.00
              800.00
                          152.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
                                             100 Points Equally Spaced
   10 Surface(s) Initiate(s) From Each Of
Along The Ground Surface Between X = 200.00(ft)
                              and X = 320.00(ft)
                                  X = 450.00(ft)
Each Surface Terminates Between
                             and
                                   X = 610.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y =
                                          0.00(ft)
35.00(ft) Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
The Angle Has Been Restricted Between The Angles Of -45.0
And 15.0 deg.
Following Are Displayed The Ten Most Critical Of The Trial
      Failure Surfaces Evaluated. They Are
      Ordered - Most Critical First.
```

 * * Safety Factors Are Calculated By The Modified Bishop Method * *

Total Number of Trial Surfaces Evaluated = 1000

No.

1

2 3

4 5

6

7

8

9

10

11

12 13

14

15

16 17

18

19

20

21

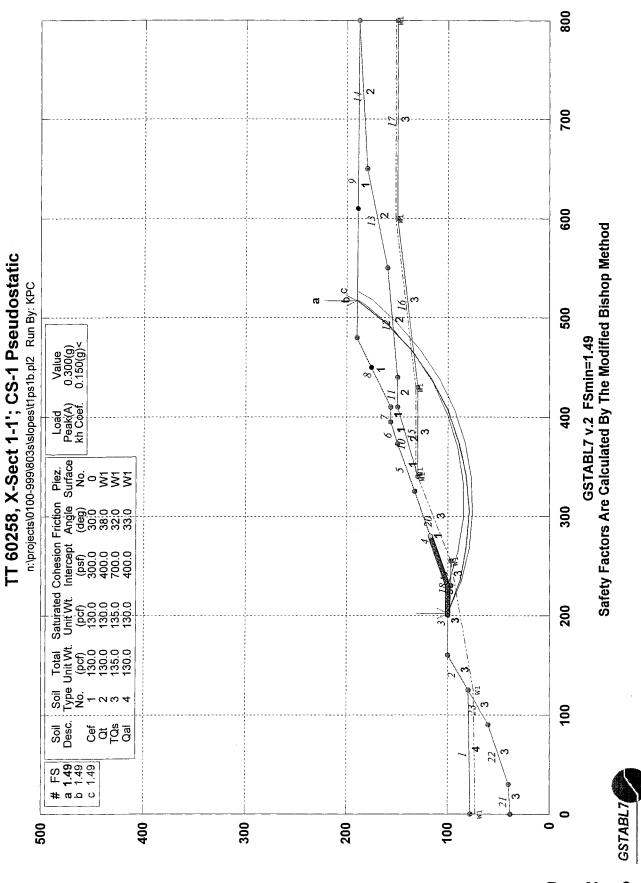
22

23

24

25

26


27 28

10

501.42

189.87

Circle Center At X = 296.53; Y = 352.30; and Radius = 261.47

Run No. 2

*** GSTABL7 ***

```
** GSTABL7 by Garry H. Gregory, P.E. **
      ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
                       (All Rights Reserved-Unauthorized Use Prohibited)
  ***************
                             SLOPE STABILITY ANALYSIS SYSTEM
           Modified Bishop, Simplified Janbu, or GLE Method of Slices.
            (Includes Spencer & Morgenstern-Price Type Analysis)
           Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
           Nonlinear Undrained Shear Strength, Curved Phi Envelope,
           Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
           Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
  ******************
 Analysis Run Date:
 Time of Run:
                                     KPC
 Run By:
 Input Data Filename: N:\Projects\0100-999\803S\Slopes\t1ps1b.in
Output Filename: N:\Projects\0100-999\803S\Slopes\t1ps1b.OUT
 Output Filename:
 Unit System: English
Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1b.PLT
 PROBLEM DESCRIPTION: TT 60258, X-Sect 1-1'; CS-1 Pseudostatic
 BOUNDARY COORDINATES
       9 Top Boundaries
     23 Total Boundaries
 Boundary X-Left Y-Left X-Right
                                                                Y-Right
                                                                               Soil Type
                   (ft)
0.00
                                 (ft) (ft)
78.00 125.00
                                                               (ft)
80.00
     No.
                                                                               Below Bnd
                                                                                4
      1
                 125.00 80.00 160.00
160.00 100.00 230.00
230.00 100.00 325.00
325.00 133.00 373.00
373.00 150.00 395.00
                                                                100.00
       2
                                                                                     3
                                                               100.00
                                                                                  3
       3
                                                               133.00
       4
                                                                                   1
       5
                                                                 150.00

      373.00
      150.00
      395.00
      157.00

      395.00
      157.00
      410.00
      157.00

      410.00
      157.00
      480.00
      190.00

      480.00
      190.00
      800.00
      188.00

      340.12
      130.00
      410.00
      150.00

      410.00
      150.00
      440.00
      150.00

      440.00
      150.00
      550.00
      160.00

      550.00
      160.00
      650.00
      180.00

      650.00
      180.00
      800.00
      188.00

      340.12
      130.00
      430.00
      130.00

      430.00
      130.00
      600.00
      150.00

      230.00
      100.00
      230.10
      97.00

      230.10
      97.00
      255.00
      97.00

      255.00
      97.00
      340.12
      130.00

      0.00
      38.00
      30.00
      40.00

                                                               157.00
       6
       7
       8
      9
     10
     11
                                                               160.00
     12
     13
                                                               180.00
                                                             188.00
     14
     15
                                                                                     3
     16
     17
                                                                                     3
     18
     19
                                                                 97.00
     20
                                                               130.00
                  0.00
                                38.00 30.00
40.00 90.00
60.00 125.00
                                                               40.00
60.00
     21
                    30.00
     22
                                                                 80.00
     23
                   90.00
 Default Y-Origin = 0.00(ft)
 Default X-Plus Value = 0.00(ft)
 Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
  4 Type(s) of Soil
 Soil Total Saturated Cohesion Friction Pore Pressure Piez.
 Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
  1 PIEZOMETRIC SURFACE(S) SPECIFIED
 Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 8 Coordinate Points
 Pore Pressure Inclination Factor = 0.50
    Point X-Water Y-Water
     No.
                    (ft)
                                      (ft)
```

73.00

0.00

1

0.0

0.0

```
2
                125.00
                             75.00
                             97.00
       3
                255.00
                340.00
                            130.00
                345.00
                            132.00
                430.00
                            132.00
                600.00
       7
                            152.00
       8
                800.00
                            152.00
   Specified Peak Ground Acceleration Coefficient (A) = 0.300(q)
   Specified Horizontal Earthquake Coefficient (kh) = 0.150(q)
                                                    0.000(g)
   Specified Vertical Earthquake Coefficient (kv) =
   Specified Seismic Pore-Pressure Factor = 0.000
   A Critical Failure Surface Searching Method, Using A Random
   Technique For Generating Circular Surfaces, Has Been Specified.
   1000 Trial Surfaces Have Been Generated.
     10 Surface(s) Initiate(s) From Each Of
                                             100 Points Equally Spaced
   Along The Ground Surface Between X = 200.00(ft)
                                and X = 280.00(ft)
  Each Surface Terminates Between X = 450.00(ft) and X = 610.00(ft)
  Unless Further Limitations Were Imposed, The Minimum Elevation
                                          0.00(ft)
  At Which A Surface Extends Is Y =
   35.00(ft) Line Segments Define Each Trial Failure Surface.
  Restrictions Have Been Imposed Upon The Angle Of Initiation.
  The Angle Has Been Restricted Between The Angles Of -45.0
  And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
            FS Max = 2.294 FS Min = 1.490
                                                 FS Ave =
                                                            1.801
            Standard Deviation = 0.176 Coefficient of Variation =
                                                                          9.79 %
         Failure Surface Specified By 12 Coordinate Points
           Point
                      X-Surf
                                  Y-Surf
            No.
                       (ft)
                      202.42
                                  100.00
            7
                      235.48
                                  88.50
             3
                      269.78
                                  81.54
             4
                      304.71
                                   79.23
             5
                      339.62
                                   81.64
             6
                      373.90
                                  88.70
             7
                      406.92
                                  100.30
            8
                      438.09
                                  116.23
            9
                      466.84
                                  136.19
            10
                      492.66
                                  159.82
            11
                      515.07
                                 186.71
           12
                      516.99
                                 189.77
        Circle Center At X = 304.28; Y = 339.09; and Radius =
                                                                       259.88
               Factor of Safety
                     1.490
              Individual data on the
                                        29 slices
                        Water Water
                                        Tie
                                                Tie
                                                        Earthquake
                        Force Force
                                        Force
                                                Force
                                                         Force Surcharge
Slice Width
              Weight
                         Top
                               Bot.
                                       Norm
                                                Tan
                                                         Hor
                                                                Ver
                                                                     Load
                                                       (lbs)
No.
       (ft)
              (lbs)
                        (lbs) (lbs)
                                        (lbs)
                                               (lbs)
                                                               (lbs)
                                                                        (lbs)
                                           0.
              12429.5
                          0.0
                                 0.0
                                                   0. 1864.4
                                                                   0.0
                                                                             0.0
 1
       23.0
               5429.1
                          0.0
                                351.9
                                            0.
                                                    0.
                                                         814.4
                                                                             0.0
        4.6
                                                                    0.0
                                            0.
 3
        0.1
                129.2
                          0.0
                                 15.6
                                                    Ο.
                                                         19.4
                                                                    0.0
                                                                             0.0
                                                    0. 1240.7
 4
        5.4
               8271.6
                          0.0 1334.4
                                            0.
                                                                    0.0
                                                                             0.0
       19.5
              48669.3
                          0.0 10822.9
                                           Ο.
                                                    0. 7300.4
                                                                    0.0
                                                                             0.0
                                                    0. 8319.1
0. 27662.8
                          0.0 14805.3
                                           0.
 6
              55460.8
                                                                    0.0
       14.8
                                                                             0.0
       34.9
             184418.8
                          0.0 59459.6
                                            Ο.
                                                                    0.0
                                                                             0.0
       20.3
                          0.0 47810.8
 8
             134794.5
                                            0.
                                                    0. 20219.2
                                                                    0.0
                                                                             0.0
 9
       14.6 106863.7
                         0.0 39213.3
                                           0.
                                                    0. 16029.6
                                                                    0.0
                                                                             0.0
                                            0.
               2867.5
                         0.0 1084.6
                                                    0. 430.1
                                                                    0.0
                                                                             0.0
1.0
        0.4
```

0.1

11

911.9

0.0 343.8

0.

0.

136.8

```
N:\Projects\0100-999\803S\Slopes\t1ps1b.OUT Page 3
12
       4.9 37310.1
                         0.0 14120.3
                                           0.
                                                   0. 5596.5
                                                                  0.0
                                                                           0.0
13
       2.1 16250.9
                         0.0 6585.7
                                          0.
                                                   0. 2437.6
                                                                  0.0
                                                                           0.0
14
       25.9 206208.1
                         0.0 76129.8
                                          0.
                                                   0. 30931.2
                                                                  0.0
                                                                           0.0
15
       0.9
             7400.4
                                          0.
                                                   0. 1110.1
0. 25787.1
                         0.0 2493.0
                                                                  0.0
                                                                           0.0
       21.1 171914.0
                                          0.
0.
                         0.0 55243.2
16
                                                                 0.0
                                                                           0.0
                         0.0 26647.4
17
      11.9
             93025.8
                                                   0. 13953.9
                                                                  0.0
                                                                           0.0
                                          0.
18
       3.1
              22803.3
                         0.0 6662.8
                                                   0. 3420.5
                                                                  0.0
                                                                           0.0
                        0.0 35057.6
19
      20.0 144598.8
                                          0.
                                                   0. 21689.8
                                                                 0.0
                                                                           0.0
                                         0.
0.
0.
            57648.8
                                                  0. 8647.3
0. 2022.3
0. 23600.0
20
       8.1
                        0.0 10314.1
                                                                 0.0
                        0.0 2328.6
0.0 15708.9
0.0 260.3
0.0 1.1
21
       1.9
             13482.2
                                                                  0.0
                                                                           0.0
      23.6 157333.6
22
                                                                  0.0
                                                                           0.0
                                                   0. 3006.2
23
       3.2
            20041.0
                                                                  0.0
                                                                           0.0
24
       0.2
              1138.5
                                                  0. 170.8
                                                                           0.0
                                                                 0.0
                                0.0
0.0
0.0
0.0
                                         0.
25
      13.0
            75298.5
                       0.0
                                                  0. 11294.8
                                                                 0.0
                                                                           0.0
       6.5 32990.8
                        0.0
                                                  0. 4948.6
26
                                                                 0.0
                                                                           0.0
                                                   0. 3919.2
0. 7248.0
27
       6.1
             26128.0
                         0.0
                                                                 0.0
                                                                           0.0
                                0.0
0.0
28
      22.4
             48320.2
                         0.0
                                          0.
                                                                  0.0
                                                                           0.0
                       0.0
29
             383.7
                                          0.
                                                   0.
       1.9
                                                       57.6
                                                                  0.0
                                                                           0.0
       Failure Surface Specified By 11 Coordinate Points
          Point
                            Y-Surf
                    X-Surf
                     (ft)
          No.
                                 (ft)
           1
                     229.90
                                100.00
            2
                     263.53
                                 90.30
            3
                    298.18
                                 85,40
            4
                     333.18
                                 85.40
            5
                                 90.30
                     367.84
            6
                     401.46
                                100.01
            7
                     433.40
                                114.33
           8
                    463.01
                                132.99
           q
                    489.72
                                155.60
           10
                    513.01
                                181.74
                                189.76
          11
                    518.34
       Circle Center At X = 315.66; Y = 334.09; and Radius = 249.31
              Factor of Safety
                    1.492 ***
       Failure Surface Specified By 12 Coordinate Points
         Point
                    X-Surf
                              Y-Surf
          No.
                     (ft)
                                 (ft)
                    201.62
                                100.00
           1
           2
                                 87.46
                    234.29
           3
                    268.35
                                 79.38
                    303.17
                                 75.91
           5
                    338.15
                                 77.11
           6
                    372.66
                                 82.95
           7
                    406.09
                                 93.34
           8
                    437.83
                                108.08
           9
                    467.32
                                126.93
          10
                    494.05
                               149.53
                    517.53
          11
                                175.48
          12
                    527.29
                                189.70
       Circle Center At X = 311.59; Y =
                                           336.78; and Radius =
             Factor of Safety
                   1.493 ***
       Failure Surface Specified By 11 Coordinate Points
                    X-Surf Y-Surf
         Point
          No.
                     (ft)
                                 (ft)
                    220.20
                                100.00
           1
           2
                    253.66
                                89.74
           3
                   288.23
                                 84.27
           4
                    323.23
                                 83.71
           5
                    357.96
                                88.06
           6
                    391.73
                                 97.24
           7
                   423.89
                                111.06
```

453.79

480.84

504.50

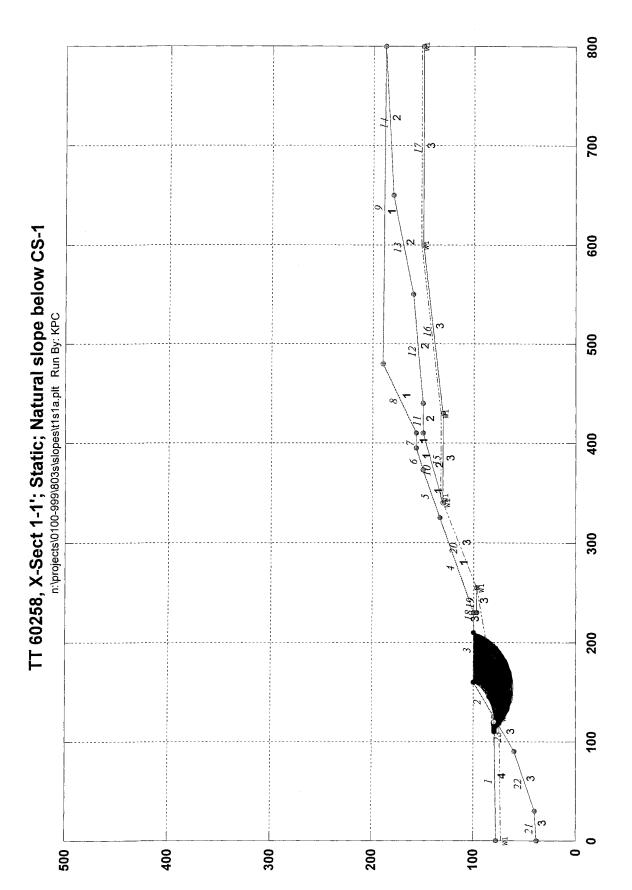
513.11

129.26

151.47 177.26

189.79

8


9

10

11

TT 60258, X-Sect 1-1'; Static; Natural slope below CS-1 Safety Factors Are Calculated By The Modified Bishop Method n:\projects\0100-999\803s\slopes\t1s1a.pl2 Run By: KPC GSTABL7 v.2 FSmin=3.54 Saturated Cohesion Friction F 1. Unit Wt. Intercept Angle St. (pcf) (psf) (deg) 130.0 300.0 30:0 130.0 400.0 38:0 135.0 700.0 32:0 135.0 400.0 33:0 # **a** to to GSTABL7

Run No. 3

*** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) ***************** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ****************************** Analysis Run Date: Time of Run: Run By: KPC Input Data Filename: N:\Projects\0100-999\803S\Slopes\t1s1a.in Output Filename: N:\Projects\0100-999\803S\Slopes\t1s1a.OUT Unit System: English Plotted Output Filename: N:\Projects\0100-999\803S\Slopes1a.PLT PROBLEM DESCRIPTION: TT 60258, X-Sect 1-1'; Static; Natural slope below CS-1 BOUNDARY COORDINATES 9 Top Boundaries 23 Total Boundaries Y-Left X-Right Soil Type Boundary X-Left Y-Right (ft) (ft) No. (ft) (ft) Below Bnd 0.00 78.00 125.00 80.00 1 4 2 125.00 80.00 160.00 100.00 100.00 3 160.00 230.00 100.00 3 133.00 4 230.00 100.00 325.00 1 5 325.00 133.00 373.00 150.00 150.00 395.00 6 373.00 157.00 1 7 395.00 157.00 410.00 157.00 1 157.00 8 410.00 480.00 190.00 480.00 190.00 9 800.00 188.00 1 340.12 130.00 10 410.00 150.00 2 150.00 410.00 11 440.00 150.00 150.00 12 440.00 550.00 160.00 2 13 550.00 160.00 650.00 180.00 2 180.00 650.00 800.00 14 188.00 2 15 340.12 130.00 430.00 130.00 3 130.00 16 430.00 600.00 150.00 150.00 600.00 150.00 17 800.00 3 100.00 230.00 230.10 18 97.00 3 97.00 19 230.10 255.00 97.00 3 20 255.00 97.00 340.12 130.00 3 21 0.00 38.00 30.00 40.00 30.00 40.00 90.00 22 60.00 23 90.00 60.00 125.00 80.00 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (pcf) (psf) (deg) No. (pcf) Param. (psf) No. 1 130.0 130.0 300.0 30.0 0.00 0.0 0 400.0 130.0 130.0 38.0 0.00 0.0 1 700.0 135.0 135.0 32.0 0.00 0.0 1 130.0 130.0 400.0 33.0 0.00 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 8 Coordinate Points

Pore Pressure Inclination Factor = 0.50

(ft)

X-Water Y-Water

(ft)

Point

No.

0.0

0.0

```
73.00
       1
                  0.00
                125.00
                             75.00
       2
       3
                255.00
                             97.00
       4
                340.00
                            130.00
       5
                345.00
                            132.00
                430.00
                            132.00
       7
                600.00
                            152.00
       8
                800.00
                            152.00
   A Critical Failure Surface Searching Method, Using A Random
   Technique For Generating Circular Surfaces, Has Been Specified.
   1000 Trial Surfaces Have Been Generated.
     10 Surface(s) Initiate(s) From Each Of
                                             100 Points Equally Spaced
   Along The Ground Surface Between X = 110.00(ft)
                                and X = 120.00(ft)
   Each Surface Terminates Between
                                     X = 160.00(ft)
                               and X = 210.00(ft)
   Unless Further Limitations Were Imposed, The Minimum Elevation
   At Which A Surface Extends Is Y =
                                          0.00(ft)
   5.00(ft) Line Segments Define Each Trial Failure Surface.
   Restrictions Have Been Imposed Upon The Angle Of Initiation.
   The Angle Has Been Restricted Between The Angles Of -45.0
   And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
        Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
            FS Max = 5.809 FS Min = 3.540
                                                  FS Ave =
                                                             4.224
            Standard Deviation = 0.465 Coefficient of Variation =
                                                                         11.01 %
         Failure Surface Specified By 15 Coordinate Points
           Point
                     X-Surf
                                 Y-Surf
            No.
                      (ft.)
                                   (ft)
                      116.06
             1
                                   79.86
             2
                     120.52
                                  77.60
             3
                     125.24
                                  75.96
             4
                      130.15
                                   74.97
             5
                     135.13
                                  74.64
             6
                     140.12
                                  74.98
             7
                     145.02
                                  75.99
             8
                     149.74
                                  77.65
             9
                     154.19
                                   79.92
            10
                     158.30
                                  82.77
                                  86.15
            11
                     161.99
                     165.19
            12
                                  89.98
            13
                     167.85
                                  94.22
            14
                     169.92
                                  98.77
                     170.30
                                  100.00
            1.5
        Circle Center At X = 135.07; Y = 111.87; and Radius =
                                                                        37.24
               Factor of Safety
                      3.540
              Individual data on the
                                       19 slices
                       Water Water
                                        Tie
                                                Tie
                                                        Earthquake
                       Force Force
                                        Force
                                                Force
                                                          Force Surcharge
              Weight
                                                Tan
Slice Width
                        Top
                               Bot
                                                                Ver Load
                                        Norm
                                                         Hor
       (ft)
               (lbs)
                        (lbs)
                              (lbs)
                                        (lbs)
                                                (lbs)
                                                        (lbs)
                                                                (lbs)
                                                                        (lbs)
                                  0.0
                                           0.
                          0.0
                                                   0.
                                                            0.0
        4.5
                 675.5
                                                                   0.0
                                  0.0
        0.2
                 52.7
                          0.0
                                            Ο.
                                                                             0.0
                                                    0.
                                                            0.0
                                                                    0.0
               1819.8
                          0.0
        4.3
                                  0.0
                                            0.
                                                    0.
                                                            0.0
                                                                    0.0
                                                                             0.0
        0.2
                134.6
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                            0.0
                                                                    0.0
                                                                             0.0
        2.5
               1709.7
                          0.0
                                  0.0
                                            0.
                                                            0.0
                                                                    0.0
                                                    0.
                                                                             0.0
        2.4
               2311.4
                          0.0
                                 69.2
                                            0.
                                                    0.
                                                            0.0
                                                                    0.0
                                                                             0.0
               6441.7
                                 458.7
                                            0.
        5.0
                          0.0
                                                    0.
                                                            0.0
                                                                    0.0
                                                                             0.0
        5.0
               8354.3
                          0.0
                                 715.9
                                            0.
                                                    0.
                                                            0.0
                                                                    0.0
                                                                             0.0
                                                                    0.0
        4.9
               9621.5
                          0.0
                                765.0
                                            0.
                                                    0.
                                                            0.0
                                                                             0.0
        4.7
                          0.0
                                                    0.
              10169.8
                                 605.2
                                                                    0.0
                                            0.
                                                            0.0
```

No.

1

2

3

4

5

6

7

8

9

4.5

9993.8

239.5

0.0

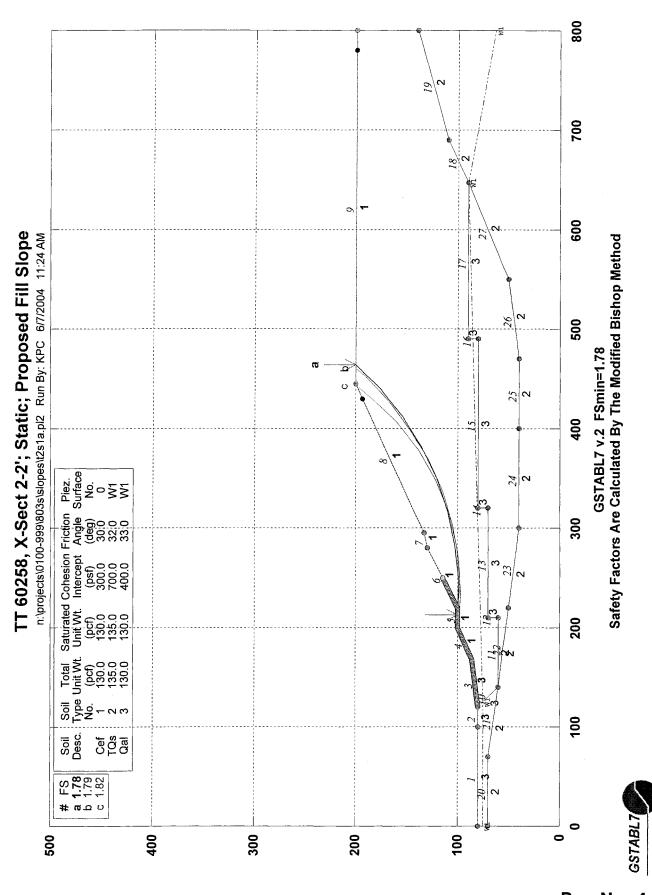
0.

0.

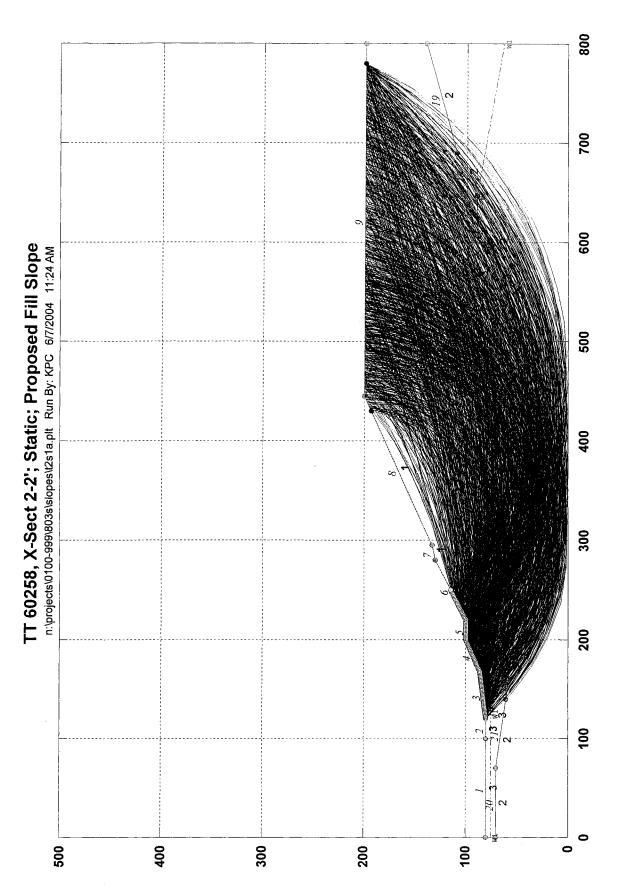
0.0

0.0

10


11

```
N:\Projects\0100-999\803S\Slopes\t1s1a.OUT Page 3
               79.9
                       0.0
                                0.0
12
       0.0
                                          0.
                                                  0.
                                                        0.0
                                                                0.0
                                                                         0.0
13
       4.1
              9076.3
                        0.0
                                0.0
                                          0.
                                                  0.
                                                        0.0
                                                                0.0
                                                                         0.0
                        0.0
                                         0.
              3665.3
                                0.0
                                                 0.
                                                        0.0
       1.7
                                                                0.0
                                                                         0.0
14
15
       2.0
              3964.7
                        0.0
                                0.0
                                         0.
                                                  0.
                                                        0.0
                                                                0.0
                                                                         0.0
       3.2
              5163.2
                        0.0
                                0.0
                                         0.
                                                  0.
                                                        0.0
                                                                0.0
                                                                         0.0
16
                                          0.
                                                  0.
              2838.2
                        0.0
                                0.0
                                                        0.0
                                                                0.0
       2.7
                                                                         0.0
17
               980.4
                        0.0
                                0.0
                                          0.
                                                  0.
                                                        0.0
                                                                0.0
18
       2.1
                                                                         0.0
                                                        0.0
19
       0.4
                30.9
                        0.0
                                0.0
                                          0.
                                                  0.
                                                                0.0
                                                                         0.0
       Failure Surface Specified By 15 Coordinate Points
         Point
                  X-Surf
                             Y-Surf
          No.
                    (ft)
                                (ft)
                                79.86
           1
                    116.16
           2
                    120.62
                                77.59
           3
                                75.91
                   125.33
           4
                   130.21
                                74.85
           5
                   135.20
                                74.43
           6
                                74.66
                   140.19
           7
                    145.11
                                75.53
           8
                    149.88
                                77.03
           9
                   154.42
                                79.13
          10
                   158.65
                                81.80
          11
                    162.50
                                85.00
          12
                    165.90
                                88.66
          13
                    168.80
                                92.73
                    171.16
                                97.14
          14
          15
                   172.24
                               100.00
       Circle Center At X = 135.93; Y = 113.10; and Radius = 38.68
             Factor of Safety
                  3.543 ***
       Failure Surface Specified By 15 Coordinate Points
                X-Surf
                             Y-Surf
         Point
          No.
                    (ft)
                                (ft)
           1
                   115.35
                                79.85
                                77.75
           2
                   119.89
           3
                   124.65
                                76.21
                   129.56
           4
                                75.27
           5
                   134.55
                                74.94
           6
                   139.54
                                75.21
           7
                                76.09
                   144.47
           8
                   149.24
                                77.56
           9
                    153.81
                                79.60
                   158.09
                                82.18
          10
          11
                   162.03
                                85.27
          12
                   165.56
                                88.80
                    168.63
                                92.75
          13
                                97.04
          14
                    171.21
                    172.52
          15
                               100.00
       Circle Center At X = 134.81; Y = 115.95; and Radius = 41.02
             Factor of Safety
             *** 3.545 ***
       Failure Surface Specified By 16 Coordinate Points
         Point
                   X-Surf
                               Y-Surf
                                (ft)
          No.
                     (ft)
           1
                    114.24
                                79.83
           2
                                77.39
                   118.61
           3
                   123.25
                                75.54
           4
                    128.09
                                74.30
                                73.69
           5
                   133.06
           6
                   138.06
                                73.73
           7
                   143.01
                                74.42
           8
                   147.83
                                75.74
           9
                   152.45
                                77.67
          10
                    156.77
                                80.18
          11
                   160.73
                                83.23
                   164.27
                                86.76
          12
                                90.72
          13
                   167.32
```


14

169.84

95.04

Run No. 4

** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) *******************

SLOPE STABILITY ANALYSIS SYSTEM

Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.

Analysis Run Date: 6/7/2004

Time of Run:

11:24 AM

Run By:

KPC

Input Data Filename:

N:\Projects\0100-999\803S\Slopes\t2s1a.in N:\Projects\0100-999\803S\Slopes\t2s1a.OUT

Output Filename: Unit System:

English

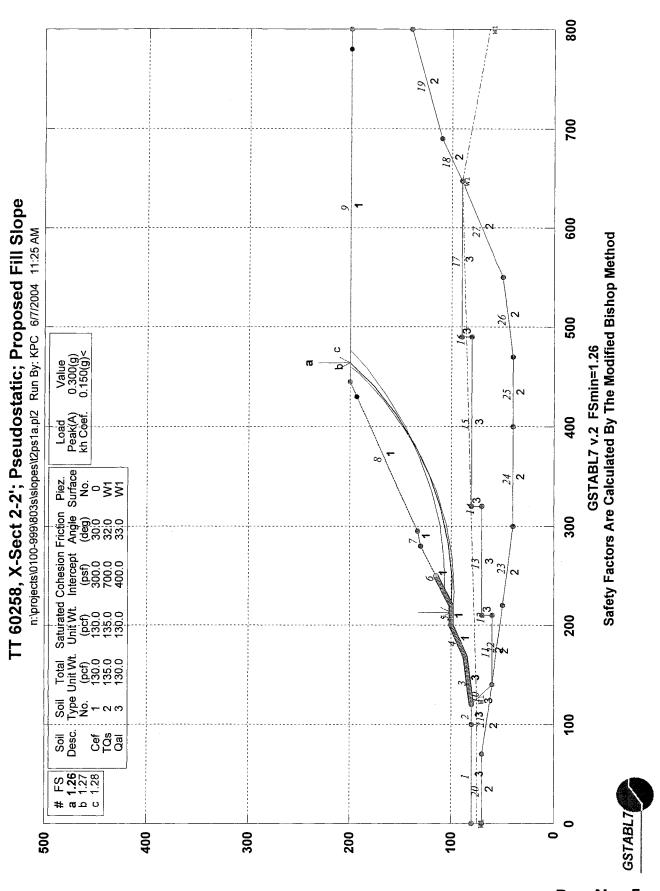
Plotted Output Filename: N:\Projects\0100-999\803S\Slopes1a.PLT

PROBLEM DESCRIPTION: TT 60258, X-Sect 2-2'; Static;

Proposed Fill Slope

BOUNDARY COORDINATES

9 Top Boundaries 27 Total Boundaries


X-Left Boundary Y-Left X-Right Y-Right Soil Type (ft) Below Bnd No. (ft) (ft) (ft)

```
1
                0.00
                          80.00
                                    100.00
                                                 80.00
                                                 80.00
              100.00
                          80.00
                                    120.00
     3
              120.00
                          80.00
                                                86.00
                                    168.00
                                                              3
     4
              168.00
                          86.00
                                    200.00
                                               100.00
                                                              1
     5
              200.00
                         100.00
                                    220.00
                                               100.00
     6
              220.00
                         100.00
                                    280.00
                                               130.00
                                                              1
     7
             280.00
                        130.00
                                    295.00
                                               133,00
                                                              1
     8
             295.00
                        133.00
                                    445.00
                                               200.00
                                                              1
    9
              445.00
                         200.00
                                    800.00
                                               200.00
                                                              1
    10
              120.00
                          80.00
                                    140.00
                                                60.00
                                                              3
                          60.00
                                                              2
    11
              140.00
                                    210.00
                                                 60.00
             210.00
                          60.00
                                    210.10
                                                 70.00
                                                              3
   12
    13
              210.10
                          70.00
                                    320.00
                                                 70.00
                                                              3
                                                80.00
              320.00
                          70.00
                                    320.10
   14
                                                              3
                                                              3
   15
              320.10
                          80.00
                                    490.00
                                                 80.00
   16
              490.00
                          80.00
                                    490.10
                                                90.00
                                                              3
                                                              3
   17
             490.10
                          90.00
                                    647.00
                                                90.00
                                                              2
   18
             647.00
                          90.00
                                    690.00
                                               110.00
                                                              2
   19
             690.00
                       110.00
                                    800.00
                                               140.00
                          70.00
                                                              2
               0.00
                                    70.00
                                                70.00
   20
               70.00
                          70.00
                                                              2
   21
                                    140.00
                                                 60.00
    22
              140.00
                          60.00
                                    220.00
                                                 50.00
                                                              2
             220.00
                                                              2
                          50.00
                                    300.00
   23
                                                 40.00
   24
              300.00
                          40.00
                                    400.00
                                                 40.00
                                                              2
                                                              2
   25
              400.00
                          40.00
                                    470.00
                                                 40.00
                          40.00
                                                              2
   26
              470.00
                                    550.00
                                                50.00
   27
              550.00
                          50.00
                                    647.00
                                                 90.00
 Default Y-Origin = 0.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
 3 Type(s) of Soil
 Soil Total Saturated Cohesion Friction Pore Pressure
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
               (pcf)
                          (psf)
                                    (deg)
                                                       (psf)
 No. (pcf)
                                            Param.
                                                                 No.
      130.0
                130.0
                          300.0
                                    30.0
                                            0.00
                                                        0.0
                                                                 0
               135.0
                          700.0
                                            0.00
                                                        0.0
  2
      135.0
                                    32.0
                                                                 1
      130.0
               130.0
                          400.0
                                    33.0
                                            0.00
                                                        0.0
1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 4 Coordinate Points
Pore Pressure Inclination Factor = 0.50
             X-Water Y-Water
   Point
                (ft)
                            (ft)
   No.
                           75.00
                0.00
    1
             125.00
    2
                           75.00
    3
              647.00
                           90.00
             800.00
                           63.00
    4
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
   10 Surface(s) Initiate(s) From Each Of
                                            100 Points Equally Spaced
Along The Ground Surface Between X = 120.00(ft)
                             and X = 250.00(ft)
Each Surface Terminates Between X = 430.00(ft) and X = 780.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y =
                                        0.00(ft)
35.00(ft) Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
The Angle Has Been Restricted Between The Angles Of -45.0
And 15.0 deg.
Following Are Displayed The Ten Most Critical Of The Trial
      Failure Surfaces Evaluated. They Are
      Ordered - Most Critical First.
       ^{\star} ^{\star} Safety Factors Are Calculated By The Modified Bishop Method ^{\star} ^{\star}
      Total Number of Trial Surfaces Evaluated = 1000
```

```
Statistical Data On All Valid FS Values:
          FS Max = 6.439 FS Min = 1.783 FS Ave = 3.133
           Standard Deviation = 0.852 Coefficient of Variation = 27.20 %
        Failure Surface Specified By 9 Coordinate Points
          Point
                   X-Surf
                             Y-Surf
          No.
                    (ft)
                               (ft)
                   213.23
                              100.00
           1
                   248.23
                               99.36
           3
                   283.07
                              102.70
           4
                   317.30
                              109.97
           5
                   350.49
                              121.08
           6
                   382.21
                              135.89
           7
                   412.03
                              154.20
           8
                   439.59
                             175.78
           9
                              200.00
                   464.17
        Circle Center At X = 236.34; Y = 406.94; and Radius = 307.81
              Factor of Safety
                  1.783 ***
            Individual data on the
                                  12 slices
                     Water Water
                                    Tie
                                          Tie
                                                   Earthquake
                     Force Force
                                   Force Force
                                                   Force Surcharge
                                   Norm
                     Top Bot (lbs)
Slice Width
            Weight
                                           Tan
                                                   Hor Ver Load
             (lbs)
No.
     (ft)
                           (lbs)
                                   (lbs)
                                           (lbs)
                                                  (lbs)
                                                         (lbs)
                                                                (lbs)
               54.4
                      0.0 0.0
                                    0. 0.
                                                  0.0
                                                          0.0
                                                                     0.0
       6.8
 1
            27292.9
                        0.0
                              0.0
                                       0.
                                              0.
                                                     0.0
                                                            0.0
 2
       28.2
                                                                     0.0
            87461.0
 3
      31.8
                      0.0
                             0.0
                                      0.
                                              0.
                                                    0.0
                                                            0.0
                                                                     0.0
            11064.9
                       0.0
                              0.0
                                       0.
 4
       3.1
                                               0.
                                                     0.0
                                                            0.0
                                                                     0.0
 5
             43191.1
                       0.0
                               0.0
                                       0.
                                               0.
                                                     0.0
      11.9
                                                            0.0
                                                                     0.0
            88083.2
                       0.0
                              0.0
                                       0.
                                              0.
 6
      22.3
                                                     0.0
                                                            0.0
                                                                     0.0
      33.2 150363.1
 7
                      0.0
                              0.0
                                      0.
                                              0.
                                                    0.0
                                                            0.0
                                                                     0.0
                                              0.
 8
      31.7 150010.2
                      0.0
                              0.0
                                      0.
                                                    0.0
                                                            0.0
                                                                     0.0
                             0.0
                                      0.
 9
      29.8 130174.8 0.0
                                              0.
                                                    0.0
                                                            0.0
                                                                     0.0
                             0.0
                                                           0.0
10
      27.6 94721.0 0.0
                                       0.
                                               0.
                                                     0.0
                                                                     0.0
                     0..
0.0
11
       5.4
             14310.5
                                        0.
                                               0.
                                                     0.0
                                                            0.0
                                                                     0.0
       19.2 23536.4
                                                            0.0
12
                                       0.
                                               0.
                                                     0.0
                                                                     0.0
       Failure Surface Specified By 10 Coordinate Points
         Point
                   X-Surf Y-Surf
          No.
                   (ft)
                               (ft)
                   198.79
           1
                               99.47
                              97.40
           2
                   233.73
                              99.38
           3
                   268.67
                              105.39
                   303.15
                              115.35
           5
                   336.70
                   368.88
                              129.13
           6
           7
                   399.24
                              146.54
                   427.39
           Я
                              167.34
           9
                   452.94
                              191.26
          10
                   460.34
                             200.00
       Circle Center At X = 234.34; Y = 397.48; and Radius = 300.12
             Factor of Safety
                  1.793 ***
       Failure Surface Specified By 9 Coordinate Points
         Point
                   X-Surf
                           Y-Surf
          No.
                    (ft)
                               (ft)
                   211.92
                              100.00
           1
           2
                   246.87
                               98.08
                   281.74
                              101.10
           3
           4
                   315.83
                              108.99
           5
                   348.48
                              121.61
                   379.03
           6
                              138.69
                   406.87
                              159.90
           8
                   431.44
                              184.82
                   441.53
                             198.45
       Circle Center At X = 242.97; Y = 346.13; and Radius = 248.08
             Factor of Safety
```

*** 1.815 ***

Failure Surface Specified By 9 Coordinate Points

Run No. 5

** GSTABL7 by Garry H. Gregory, P.E. **

** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited)

SLOPE STABILITY ANALYSIS SYSTEM

Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.

Analysis Run Date: 6/7/2004 11:25 AM Time of Run:

Run By: KPC

Input Data Filename: N:\Projects\0100-999\803S\Slopes\t2ps1a.in N:\Projects\0100-999\803S\Slopes\t2ps1a.OUT Output Filename:

Unit System: English

Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1a.PLT

PROBLEM DESCRIPTION: TT 60258, X-Sect 2-2'; Pseudostatic;

Proposed Fill Slope

BOUNDARY COORDINATES

9 Top Boundaries 27 Total Boundaries

21 1004	- Dodinacia	-			
Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	0.00	80.00	100.00	80.00	3
2	100.00	80.00	120.00	80.00	3
3	120.00	80.00	168.00	86.00	3
4	168.00	86.00	200.00	100.00	1
5	200.00	100.00	220.00	100.00	1
6	220.00	100.00	280.00	130.00	3 1 1 1
7	280.00	130.00	295.00	133.00	
8	295.00	133.00	445.00	200.00	1
9	445.00	200.00	800.00	200.00	1
10	120.00	80.00	140.00	60.00	1 3 2 3 3 3 3 3 2 2
11	140.00	60.00	210.00	60.00	2
12	210.00	60.00	210.10	70.00	3
13	210.10	70.00	320.00	70.00	3
14	320.00	70.00	320.10	80.00	3
15	320.10	80.00	490.00	80.00	3
16	490.00	80.00	490.10	90.00	3
17	490.10	90.00	647.00	90.00	3
18	647.00	90.00	690.00	110.00	2
19	690.00	110.00	800.00	140.00	2
20	0.00	70.00	70.00	70.00	2 2
21	70.00	70.00	140.00	60.00	2
22	140.00	60.00	220.00	50.00	2 2
23	220.00	50.00	300.00	40.00	2
24	300.00	40.00	400.00	40.00	2
25	400.00	40.00	470.00	40.00	2 2 2
26	470.00	40.00	550.00	50.00	2
27	550.00	50.00	647.00	90.00	2

Default Y-Origin = 0.00(ft)

Default X-Plus Value = 0.00(ft)

Default Y-Plus Value = 0.00(ft)

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	130.0	130.0	300.0	30.0	0.00	0.0	0
2	135.0	135.0	700.0	32.0	0.00	0.0	1
3	130.0	130.0	400.0	33.0	0.00	0.0	1

1 PIEZOMETRIC SURFACE(S) SPECIFIED

Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 4 Coordinate Points

```
Pore Pressure Inclination Factor = 0.50
               X-Water
                            Y-Water
                 (ft)
                              (ft)
     No.
                  0.00
                             75.00
       1
       2
                125.00
                             75.00
       3
                647.00
                             90.00
                800.00
                             63.00
   Specified Peak Ground Acceleration Coefficient (A) = 0.300(g)
   Specified Horizontal Earthquake Coefficient (kh) = 0.150(g)
   Specified Vertical Earthquake Coefficient (kv) =
   Specified Seismic Pore-Pressure Factor =
                                             0.000
  A Critical Failure Surface Searching Method, Using A Random
  Technique For Generating Circular Surfaces, Has Been Specified.
  1000 Trial Surfaces Have Been Generated.
     10 Surface(s) Initiate(s) From Each Of
                                             100 Points Equally Spaced
  Along The Ground Surface Between X = 120.00(ft)
and X = 250.00(ft)
  Each Surface Terminates Between X = 430.00(ft)
                                    X = 780.00(ft)
                               and
  Unless Further Limitations Were Imposed, The Minimum Elevation
  At Which A Surface Extends Is Y = 0.00(ft)
  35.00(ft) Line Segments Define Each Trial Failure Surface.
  Restrictions Have Been Imposed Upon The Angle Of Initiation.
  The Angle Has Been Restricted Between The Angles Of -45.0
  And 15.0 deg.
  Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
            FS Max = 3.123 FS Min = 1.260 FS Ave = 1.950 Standard Deviation = 0.376 Coefficient of Variation =
                                                                         19.27 %
         Failure Surface Specified By 9 Coordinate Points
           Point
                    X-Surf
                                Y-Surf
            No.
                      (ft)
                      213.23
                                  100.00
            1
                     248.23
             2
                                  99.36
                                 102.70
                     283.07
             .3
             4
                     317.30
                                 109.97
             5
                      350.49
                                 121.08
             6
                      382.21
                                 135.89
             7
                      412.03
                                 154.20
             8
                      439.59
                                  175.78
             9
                      464.17
                                  200.00
         Circle Center At X =
                              236.34; Y = 406.94; and Radius = 307.81
               Factor of Safety
                      1.260 ***
              Individual data on the
                                       12 slices
                        Water Water
                                        Tie
                                                Tie
                                                         Earthquake
                        Force Force
                                        Force
                                                Force
                                                         Force Surcharge
                                                                Ver
Slice Width
              Weight
                               Bot
                                                Tan
                        Top
                                        Norm
                                                         Hor
                                                                        Load
              (lbs)
                                                        (lbs)
        (ft)
                        (lbs) (lbs)
                                        (lbs)
                                                (lbs)
                                                                (lbs)
                                                                        (lbs)
No.
                                                  0. 8.2
0. 4093.9
                          0.0
                                0.0
                                          0.
        6.8
                 54.4
                                                         8.2
                                                                  0.0
                                                                             0.0
              27292.9
        28.2
                           0.0
                                   0.0
                                             0.
                                                                    0.0
                                                                             0.0
              87461.0
                                                     0. 13119.1
       31.8
                          0.0
                                  0.0
                                             0.
                                                                    0.0
                                                                             0.0
                                                     0. 1659.7
        3.1
              11064.9
                          0.0
                                  0.0
                                             0.
                                                                    0.0
                          0.0
                                  0.0
       11.9
              43191.1
                                             0.
                                                     0. 6478.7
                                                                    0.0
                                                                             0.0
       22.3
              88083.2
                          0.0
                                  0.0
                                            0.
                                                     0. 13212.5
                                                                    0.0
                                                                             0.0
       33.2
             150363.1
                          0.0
                                  0.0
                                             0.
                                                     0. 22554.5
                                                                    0.0
       31.7 150010.2
                                                    0. 22501.5
                          0.0
                                  0.0
                                            Ο.
                                                                             0.0
                                                                    0.0
       29.8 130174.8
                          0.0
                                  0.0
                                            0.
                                                     0. 19526.2
                                                                    0.0
       27.6
              94721.0
                          0.0
                                  0.0
                                             0.
                                                     0. 14208.2
                                                                    0.0
                                                                             0.0
             14310.5
                                  0.0
                                                     0. 2146.6
0. 3530.5
        5.4
                          0.0
                                             0.
                                                                    0.0
                                                                             0.0
       19.2
              23536.4
                          0.0
                                  0.0
                                            0.
                                                                    0.0
        Failure Surface Specified By 10 Coordinate Points
```

2

3

4

5

6

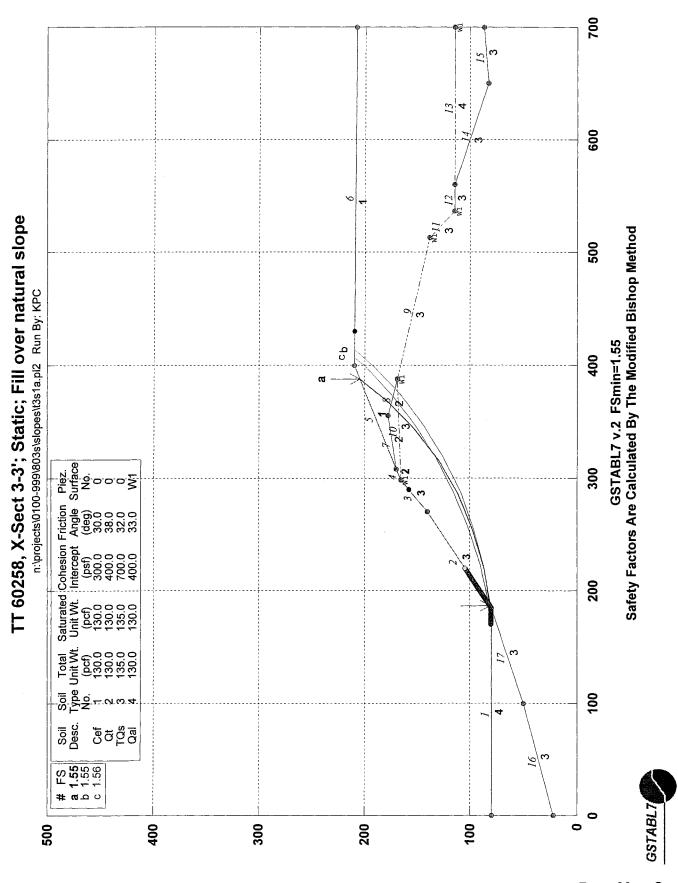
7

8

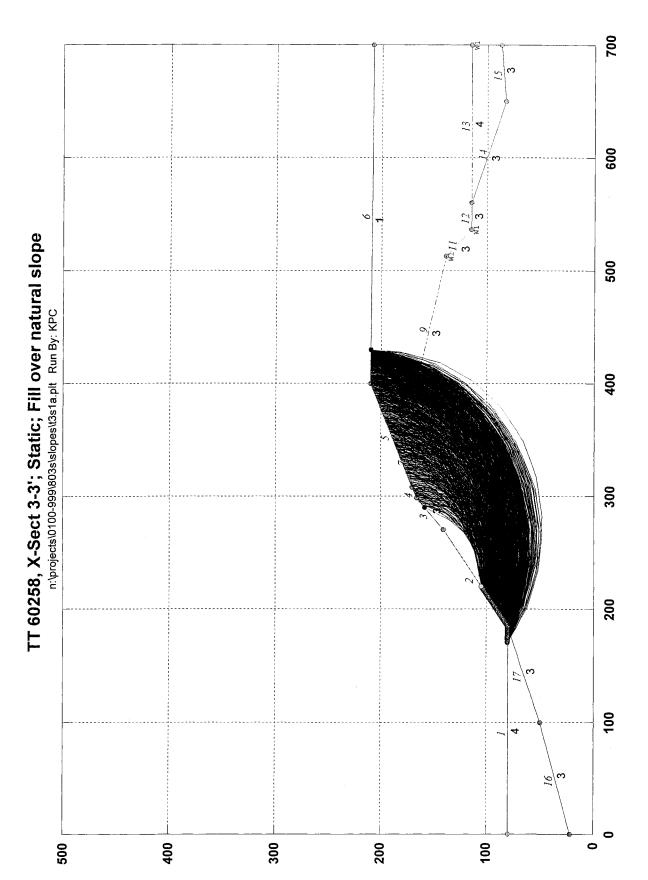
9

10

11


12

X-Surf


Point

Y-Surf

```
(ft)
                         (ft)
  No.
   1
            198.79
                         99.47
    2
                         97.40
            233.73
    3
            268.67
                         99.38
    4
             303.15
                         105.39
                        115.35
    5
             336.70
             368.88
                        129.13
    6
    7
             399.24
                        146.54
    8
             427.39
                        167.34
    9
             452.94
                        191.26
   10
             460.34
                         200.00
                                    397.48; and Radius = 300.12
Circle Center At X = 234.34; Y =
      Factor of Safety
            1.269 ***
Failure Surface Specified By 9 Coordinate Points
  Point
                        Y-Surf
            X-Surf
   No.
             (ft)
                         (ft)
             231.62
                        105.81
    1
                        106.85
    2
            266.60
    3
             301.31
                        111.38
                        119.37
    4
             335.38
    5
             368.49
                        130.72
    6
             400.29
                        145.34
             430.48
                        163.06
    7
             458.73
                        183.71
    8
                        200.00
    9
             476.89
Circle Center At X =
                                    455.08; and Radius = 349.34
                     238.74 ; Y =
      Factor of Safety
            1.275 ***
Failure Surface Specified By 10 Coordinate Points
  Point
            X-Surf
                        Y-Surf
                         (ft)
  No.
             (ft)
             204.04
                         100.00
   1
                         96.87
    2
             238.90
            273.89
                         97.69
    3
    4
            308.57
                        102.44
    5
             342.49
                        111.07
    6
            375.22
                        123.46
    7
             406.35
                         139.46
             435.48
                        158.86
    8
             462.24
                        181.42
    9
             479.81
                        200.00
   10
                                     405.46 ; and Radius =
                                                            308.79
Circle Center At X = 249.29; Y =
      Factor of Safety
            1.285 ***
Failure Surface Specified By 11 Coordinate Points
            X-Surf
                      Y-Surf
  Point
   No.
             (ft)
                         (ft)
            156.77
                         84.60
    1
    2
            191.60
                         81.13
    3
             226.59
                         81.41
             261.36
                         85.44
    4
            295.50
                         93.16
    5
                        104.48
    6
             328.62
    7
             360.33
                        119.29
    8
             390.28
                         137.40
    9
             418.12
                         158.62
             443.53
                        182.69
   1.0
             458.26
                         200.00
                                    407.47; and Radius =
                                                            326.68
                     206.48 ; Y =
Circle Center At X =
      Factor of Safety
            1.286 ***
Failure Surface Specified By 11 Coordinate Points
            X-Surf
                        Y-Surf
  Point
             (ft)
                         (ft)
   No.
             167.27
                          85.91
    1
             202.10
                          82.43
    2
```


Run No. 6

*** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) ***************** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ***************** Analysis Run Date: Time of Run: KPC Run By: N:\Projects\0100-999\803S\Slopes\t3s1a.in Input Data Filename: Output Filename: N:\Projects\0100-999\803S\Slopes\t3s1a.OUT Unit System: English Plotted Output Filename: N:\Projects\0100-999\803S\Slopes1a.PLT PROBLEM DESCRIPTION: TT 60258, X-Sect 3-3'; Static; Fill over natural slope BOUNDARY COORDINATES 6 Top Boundaries 17 Total Boundaries Y-Left X-Right Y-Right Soil Type X-Left Boundary (ft) Below Bnd No. (ft) (ft) 185.00 270.00 (ft) 80.00 80.00 1 0.00 185.00 80.00 140.00 3 2 165.00 3 298.00 270.00 140.00 3 308.00 298.00 165.00 170.00 2 4 400.00 308.00 170.00 210.00 1 5 700.00 208.00 210.00 1 400.00 6 355.00 388.00 513.00 170.00 178.00 7 308.00 178.00 169.00 2 8 355.00 169.00 388.00 138.00 3 9 165.00 388.00 169.00 3 298.00 10 115.00 3 513.00 138.00 536.00 11 560.00 536.00 115.00 560.00 115.00 115.00 3 12 115.00 700.00 4 13 82.00 650.00 3 14 560.00 115.00 650.00 82.00 700.00 87.00 15 50.00 22.00 100.00 3 0.00 16 80.00 185.00 17 100.00 50.00 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (psf) (deg) (pcf) No. (pcf) (deg) Param. (psf) No. 0.00 0.0 130.0 1 130.0 Ω 130.0 130.0 400.0 38.0 0.00 0.0 2 700.0 400.0 32.0 33.0 0 135.0 0.00 0.0 3 135.0 130.0 0.00 0.0 1 130.0 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 5 Coordinate Points Pore Pressure Inclination Factor = 0.50 Y-Water X-Water Point (ft) (ft) No. 298.00 165.00 1 169.00 388.00

138.00

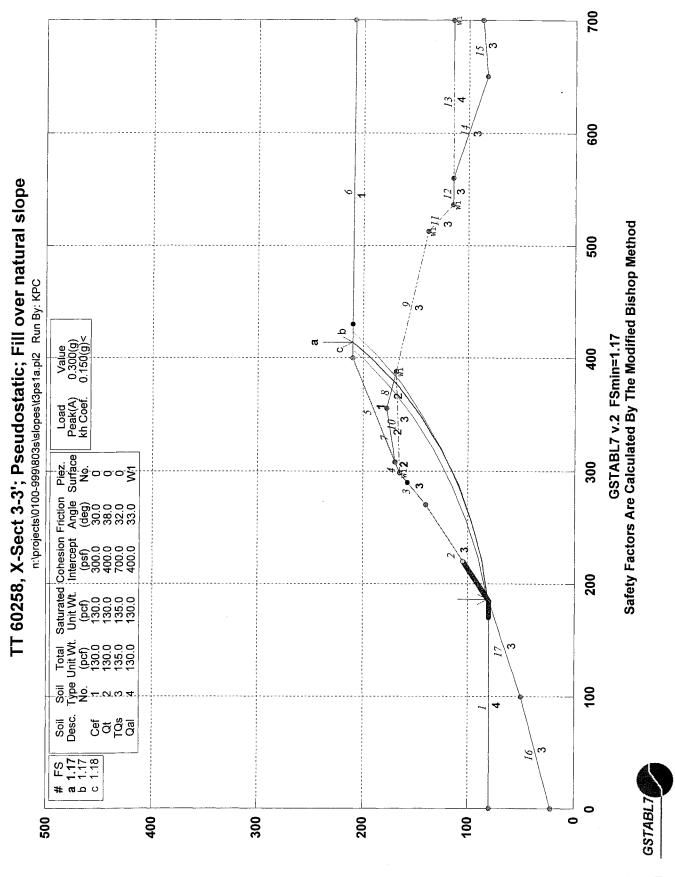
115.00

115.00

513.00

536.00 700.00

3


```
A Critical Failure Surface Searching Method, Using A Random
  Technique For Generating Circular Surfaces, Has Been Specified.
  1000 Trial Surfaces Have Been Generated.
    10 Surface(s) Initiate(s) From Each Of
                                               100 Points Equally Spaced
  Along The Ground Surface Between X = 170.00(ft)
                                and X = 220.00(ft)
                                     X = 290.00(ft)
  Each Surface Terminates Between
                               and
                                     X = 430.00(ft)
  Unless Further Limitations Were Imposed, The Minimum Elevation
  At Which A Surface Extends Is Y =
                                           0.00(ft)
  35.00(ft) Line Segments Define Each Trial Failure Surface.
  Restrictions Have Been Imposed Upon The Angle Of Initiation.
  The Angle Has Been Restricted Between The Angles Of -45.0
  And 15.0 deg.
  Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
                                                   FS Ave =
                                                              1.925
            FS Max = 2.618 FS Min = 1.546
                                    0.210 Coefficient of Variation =
                                                                           10.92 %
            Standard Deviation =
         Failure Surface Specified By 8 Coordinate Points
           Point.
                      X-Surf
                                  Y-Surf
            No.
                       (ft)
                                    (ft)
                      186.16
                                    80.82
             1
             2
                      220.65
                                   86.77
                                   97.05
             3
                      254.11
                                   111.50
             4
                      285.99
                      315.77
                                   129.88
             5
             6
                      342.97
                                   151.90
                                   177.20
             7
                      367.16
                                  204.47
                      387.28
                                156.88 ; Y = 353.83 ; and Radius = 274.57
         Circle Center At X =
               Factor of Safety
                      1.546
                                         13 slices
              Individual data on the
                        Water Water
                                          Tie
                                                  Tie
                                                          Earthquake
                                                                     Surcharge
                        Force Force
                                         Force
                                                 Force
                                                            Force
              Weight
                                Bot
                                         Norm
                                                  Tan
                                                          Hor
                                                                   Ver
                                                                          Load
Slice Width
                         Top
                                                                  (lbs)
                                                  (lbs)
                                                          (lbs)
                                                                           (lbs)
        (ft)
                (lbs)
                         (lbs)
                               (lbs)
                                         (lbs)
No.
                                                                      0.0
                                              0.
                                                                                0.0
                                   0.0
                                                      0.
                                                             0.0
        34.5
               42833.7
                           0.0
 1
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                                                0.0
                           0.0
                                    0.0
  2
        33.5
              113205.0
  3
       15.9
               72383.1
                           0.0
                                    0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                                                0.0
                                                                                0.0
                           0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
       16.0
               84722.8
                                    0.0
       12.0
               72058.4
                           0.0
                                    0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                                                0.0
 5
                                                                                0.0
  6
       10.0
               61306.9
                           0.0
                                    0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                              0.0
                                                                      0.0
                                                                                0.0
  7
                           0.0
                                    0.0
                                              0.
                                                      0.
         7.8
               46123.0
        27.2
              139272.3
                           0.0
                                    0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                                                0.0
 8
                                                                      0.0
                                                                                0.0
                                                      0.
                                                              0.0
       12.0
               46862.7
                           0.0
                                    0.0
                                              0.
  9
                9937.5
                           0.0
                                    0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                                                0.0
10
         3.0
                                    0.0
11
         7.2
               20501.5
                           0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                                                0.0
                                              0.
                                                      0.
                                                              0.0
                                                                      0.0
                                                                                0.0
 12
         1.9
                4743.5
                           0.0
                                    0.0
                                                                      0.0
                                                                                0.0
               24213.7
                           0.0
                                    0.0
                                              0.
                                                      0.
                                                              0.0
13
        20.1
         Failure Surface Specified By 9 Coordinate Points
                                  Y-Surf
           Point
                      X-Surf
            No.
                       (ft)
                                    (ft)
                      186.67
                                    81.18
             1
             2
                                   86.74
                      221.22
                      254.99
                                    95.95
             3
             4
                      287.58
                                   108.70
                                   124.84
                      318.64
             5
             6
                                   144.20
                      347.80
             7
                      374.73
                                   166.55
             8
                      399.13
                                   191.64
             9
                      413.46
                                   209.91
```

151.81 ; Y = 407.77 ; and Radius =

328.45

Circle Center At X =

```
Factor of Safety
           1.550 ***
Failure Surface Specified By 9 Coordinate Points
            X-Surf
                        Y-Surf
  Point
   No.
             (ft)
                         (ft)
    1
            188.69
                         82.60
    2
            222.81
                        90.41
    3
            256.03
                       101.40
    4
            288.07
                       115.49
    5
            318.64
                        132.54
    6
             347.46
                        152.40
    7
            374.28
                        174.89
            398.85
                        199.81
    8
    9
            407.11
                       209.95
Circle Center At X = 123.30; Y = 446.86; and Radius = 370.08
      Factor of Safety
            1.555
Failure Surface Specified By 8 Coordinate Points
  Point
           X-Surf
                       Y-Surf
  No.
             (ft)
                         (ft)
                         81.53
   1
            187.17
    2
            221.54
                        88.17
    3
            254.65
                         99.50
            285.88
                       115.30
    4
            314.62
                       135.27
    5
    6
            340.32
                       159.03
    7
            362.49
                       186.12
    8
            368.75
                        196.41
Circle Center At X = 157.56; Y = 329.29; and Radius = 249.52
     Factor of Safety
            1.555 ***
     ***
Failure Surface Specified By 7 Coordinate Points
  Point X-Surf Y-Surf
  No.
             (ft)
                         (ft)
   1
            185.66
                         80.46
   2
            220.11
                        86.64
   3
            253.13
                        98.23
            283.90
   4
                        114.92
   5
            311.61
                       136.30
    6
            335.56
                        161.82
                       190.36
   7
            354.83
Circle Center At X = 164.33; Y = 298.54; and Radius = 219.12
     Factor of Safety
           1.558 ***
Failure Surface Specified By 8 Coordinate Points
 Point
          X-Surf
                     Y-Surf
             (ft)
                        (ft)
  No.
   1
            187.68
                        81.89
   2
            222.28
                        87.12
   3
            255.60
                        97.86
   4
            286.74
                       113.83
   5
            314.89
                       134.63
            339.32
   6
                       159.69
   7
            359.39
                       188.37
   8
            361.81
                       193.39
Circle Center At X = 173.28 ; Y =
                                   296.09 ; and Radius = 214.68
     Factor of Safety
           1.559 ***
Failure Surface Specified By 9 Coordinate Points
 Point
           X-Surf
                      Y-Surf
  No.
             (ft)
                        (ft)
            189.70
   1
                        83.32
   2
           224.41
                        87.77
   3
            258.27
                        96.63
   4
            290.73
                       109.73
   5
            321.24
                       126.88
            349.31
   6
                       147.78
```


Run No. 7

*** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) ************** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: Time of Run: KPC Run By: Input Data Filename: N:\Projects\0100-999\803S\Slopes\t3ps1a.in Output Filename: N:\Projects\0100-999\803S\Slopes\t3ps1a.OUT Unit System: English
Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1a.PLT
PROBLEM DESCRIPTION: TT 60258, X-Sect 3-3'; Pseudostatic; Fill over natural slope BOUNDARY COORDINATES 6 Top Boundaries 17 Total Boundaries Y-Right Boundary X-Left Y-Left X-Right Soil Type (ft) (ft) (ft) 80.00 185.00 No. (ft) Below Bnd 0.00 80.00 4 1 185.00 00.00 270.00 140.00 298.00 165.00 308.00 170.00 400.00 210.00 185.00 80.00 270.00 140.00 165.00 3 298.00 3 308.00 170.00 4 2 5 400.00 210.00 1 700.00 208.00 6 1 308.00 170.00 7 355.00 178.00 2 8 355.00 178.00 388.00 169.00 388.00 298.00 169.00 513.00 138.00 9 3 10 165.00 138.00 388.00 536.00 169.00 3 513.00 115.00 11 3 536.00 115.00 12 560.00 3 115.00 560.00 115.00 700.00 115.00 1.3 650.00 560.00 115.00 82.00 3 14 650.00 87.00 50.00 15 82.00 3 0.00 22.00 100.00 3 16 80.00 185.00 100.00 50.00 17 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure (deg) Param. (psf) Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) No. 1 130.0 130.0 300.0 0 36.. 32.0 33.0 130.0 130.0 400.0 0.00 0.0 0 2 135.0 135.0 400.0 700.0 0.00 0 3 0.0 130.0 130.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 5 Coordinate Points Pore Pressure Inclination Factor = 0.50 X-Water Y-Water Point No. (ft) (ft) 298.00 165.00 1 388.00 169.00

513.00

4

536.00

700.00

138.00

115.00

```
Specified Peak Ground Acceleration Coefficient (A) =
                                                          0.300(q)
                                                       0.150(g)
   Specified Horizontal Earthquake Coefficient (kh) =
   Specified Vertical Earthquake Coefficient (kv) =
   Specified Seismic Pore-Pressure Factor = 0.000
   A Critical Failure Surface Searching Method, Using A Random
   Technique For Generating Circular Surfaces, Has Been Specified.
   1000 Trial Surfaces Have Been Generated.
                                              100 Points Equally Spaced
     10 Surface(s) Initiate(s) From Each Of
   Along The Ground Surface Between X = 170.00(ft)
                                and X = 220.00(ft)
   Each Surface Terminates Between X = 290.00(ft)
                                    X = 430.00(ft)
                               and
   Unless Further Limitations Were Imposed, The Minimum Elevation
   At Which A Surface Extends Is Y =
                                           0.00(ft)
   35.00(ft) Line Segments Define Each Trial Failure Surface.
   Restrictions Have Been Imposed Upon The Angle Of Initiation.
   The Angle Has Been Restricted Between The Angles Of -45.0
   And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
                       1.993
                                                   FS Ave =
            FS Max =
                              FS Min = 1.169
                                                              1.480
                                            Coefficient of Variation =
                                    0.164
            Standard Deviation =
                                                                          11.06 %
         Failure Surface Specified By 9 Coordinate Points
                      X-Surf
                                  Y-Surf
            No.
                       (ft)
                                   (ft)
            1
                      186.67
                                   81.18
             2
                      221.22
                                   86.74
             3
                      254.99
                                   95.95
             4
                      287.58
                                  108.70
             5
                      318.64
                                  124.84
                      347.80
                                  144.20
             6
                      374.73
                                  166.55
             8
                      399.13
                                  191.64
                                  209.91
                      413.46
         Circle Center At X =
                                151.81 ; Y =
                                               407.77 ; and Radius =
                                                                        328.45
               Factor of Safety
                      1.169
              Individual data on the
                                        15 slices
                                         Tie
                                                 Tie
                        Water Water
                                                          Earthquake
                        Force Force
                                        Force
                                                 Force
                                                            Force Surcharge
                         Top
Slice Width
               Weight
                                Bot
                                        Norm
                                                 Tan
                                                          Hor
                                                                  Ver
                                                                       Load
                               (lbs)
                                                         (lbs)
                                                                 (1bs)
                                                                         (lbs)
                (lbs)
                        (lbs)
                                         (lbs)
                                                 (lbs)
No.
        (ft)
                                                     0. 6587.7
                                   0.0
                                             0.
                                                                     0.0
                                                                              0.0
        34.6
               43917.8
                           0.0
 1
                                                     0. 17875.7
       33.8
              119171.6
                           0.0
                                   0.0
                                             0.
                                                                     0.0
                                                                              0.0
              72587.1
                                             0.
                                                     0. 10888.1
                                                                     0.0
                           0.0
                                   0.0
                                                                              0.0
       15.0
             101107.4
                           0.0
                                   0.0
                                             0.
                                                     0. 15166.1
                                                                     0.0
       17.6
                                                     0. 10323.7
                                             0.
                           0.0
                                   0.0
                                                                     0.0
                                                                              0.0
  5
       10.4
               68824.6
                                                     0. 10267.5
  6
       10.0
               68450.3
                           0.0
                                   0.0
                                             0.
                                                                     0.0
                                                                              0.0
       10.6
               71791.3
                           0.0
                                   0.0
                                             0.
                                                     0. 10768.7
                                                                     0.0
                                                                              0.0
             180725.3
                                   0.0
                                             0.
                                                     0. 27108.8
                                                                     0.0
                                                                              0.0
 8
                           0.0
       29.2
                                                     0. 5963.2
 9
        7.2
               39754.8
                           0.0
                                   0.0
                                             0.
                                                                     0.0
                                                                              0.0
10
       19.7
               94214.2
                           0.0
                                   0.0
                                             0.
                                                     0. 14132.1
                                                                     0.0
                                                                              0.0
                                                     0. 1177.3
        1.9
               7848.4
                           0.0
                                   0.0
                                             0.
                                                                     0.0
                                                                              0.0
                                             0.
                                                     0.
                                                          1650.9
                                                                     0.0
        2.8
               11006.2
                           0.0
                                   0.0
                                                                              0.0
                                                     0. 9175.5
                                                                     0.0
       19.7
               61169.9
                           0.0
                                   0.0
                                             0.
                                                                              0.0
                                             0.
        0.9
               1983.5
                           0.0
                                   0.0
                                                     0.
                                                          297.5
                                                                     0.0
                                                                              0.0
       13.5
              15093.0
                           0.0
                                   0.0
                                             0.
                                                     0.
                                                          2264.0
                                                                     0.0
                                                                              0.0
         Failure Surface Specified By 9 Coordinate Points
                     X-Surf
           Point
                                  Y-Surf
           No.
                       (ft)
                                   (ft)
                      185.66
                                   80.46
            1
             2
                      220.10
                                   86.68
```

3

4

7

11

12

13

14

15

3

253.82

```
N:\Projects\0100-999\803S\Slopes\t3ps1a.OUT Page 3
            286.53
                        108.51
            317.95
    5
                        123.94
    6
            347.80
                        142.21
    7
            375.84
                        163.16
    8
            401.81
                        186.61
    9
            423.18
                        209.85
Circle Center At X = 135.86; Y = 455.02; and Radius = 377.85
      Factor of Safety
            1.169 ***
Failure Surface Specified By 9 Coordinate Points
  Point
          X-Surf
                      Y-Surf
                         (ft)
  No.
             (ft)
                        82.60
   1
            188.69
    2
            222.81
                        90.41
   3
            256.03
                        101.40
            288.07
                        115.49
    5
            318.64
                        132.54
    6
            347.46
                       152.40
    7
            374.28
                       174.89
    8
            398.85
                        199.81
   9
            407.11
                        209.95
                     123.30; Y = 446.86; and Radius = 370.08
Circle Center At X =
     Factor of Safety
           1.175 ***
Failure Surface Specified By 9 Coordinate Points
  Point
           X-Surf
                       Y-Surf
  No.
             (ft)
                         (ft)
                        82.60
   1
            188.69
                        88.39
   2
            223.21
   3
            257.01
                        97.47
                       109.76
   4
            289.78
            321.21
   5
                       125.15
   6
            351.02
                        143.49
                        164.62
   7
            378.93
   8
            404.67
                       188.33
   9
            423.93
                       209.84
                     145.93; Y = 443.43; and Radius = 363.35
Circle Center At X =
     Factor of Safety
            1.177 ***
Failure Surface Specified By 9 Coordinate Points
           X-Surf
                      Y-Surf
 Point
  No.
             (ft)
                         (ft)
            191.72
                        84.74
   1
   2
            225.98
                        91.90
   3
            259.38
                        102.34
            291.63
                       115.96
   4
            322.40
                       132.62
   5
   6
            351.43
                       152.18
   7
            378.43
                       174.45
   8
            403.15
                        199.23
   9
            411.93
                       209.92
Circle Center At X = 134.84; Y = 442.26; and Radius = 362.02
      Factor of Safety
           1.178 ***
Failure Surface Specified By 9 Coordinate Points
 Point
            X-Surf
                      Y-Surf
                        (ft)
             (ft)
  No.
   1
            191.72
                        84.74
            226.18
   2
                        90.84
   3
            259.76
                       100.70
   4
            292.06
                       114.20
   5
            322.67
                       131.17
   6
            351.22
                       151.41
```

8

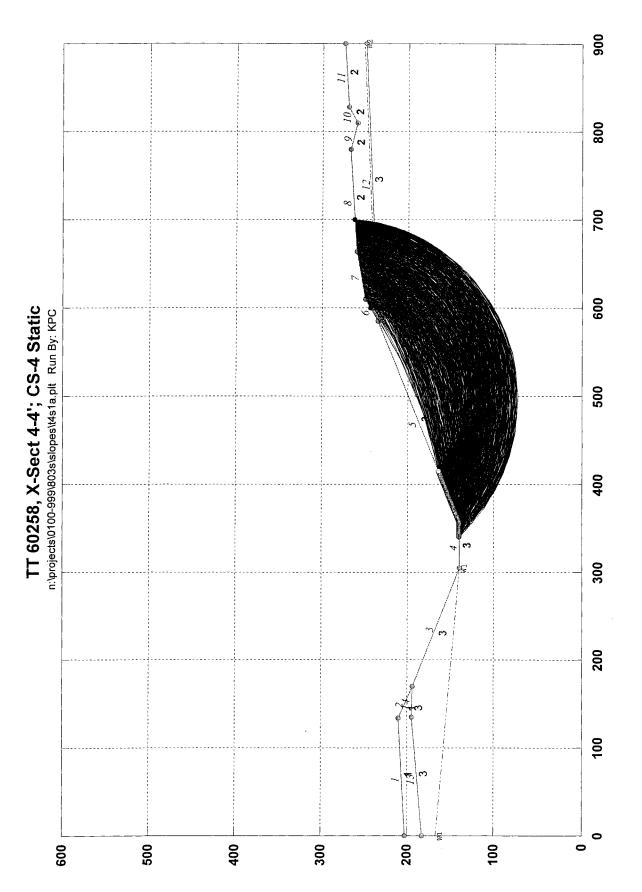
9

Circle Center At X =

377.38

400.81


407.48


174.67

200.66

209.95

153.71 ; Y = 399.83 ; and Radius = 317.37

*** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ****************** Analysis Run Date: Time of Run: Run By: KPC Input Data Filename: N:\Projects\0100-999\803S\Slopes\t4s1a.in N:\Projects\0100-999\803S\Slopes\t4s1a.OUT Output Filename: English Unit System: Plotted Output Filename: N:\Projects\0100-999\803S\Slopes1a.PLT PROBLEM DESCRIPTION: TT 60258, X-Sect 4-4'; CS-4 Static BOUNDARY COORDINATES 11 Top Boundaries 14 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type (ft) No. (ft) (ft) (ft) Below Bnd 1 0.00 203.00 134.00 210.00 1 134.00 210.00 170.00 194.00 2 1 170.00 194.00 305.00 140.00 3 3 140.00 357.00 305.00 140.00 3 4 5 357.00 140.00 585.00 235.00 3 585.00 2 235.00 610.00 250.00 6 250.00 664.00 260.00 780.00 268.00 810.00 610.00 260.00 7 2 664.00 780.00 8 260.00 780.00 268.00 810.00 260.00 828.00 270.00 900.00 268.00 2 2 9 260.00 2 810.00 270.00 1.0 2 828.00 275.00 11 900.00 3 585.00 235.00 12 250.00 3 13 0.00 182.00 135.00 195.00 135.00 195.00 170.00 194.00 14 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (psf) (deg) No. (pcf) (pcf) Param. (psf) No. 300.0 130.0 130.0 30.0 0.00 0.0 0 1 130.0 130.0 400.0 38.0 0.00 0.0 2 2 135.0 135.0 700.0 32.0 0.00 0.0 2 2 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.50 Point X-Water Y-Water (ft) (ft) No. 1 0.00 167.00 305.00 140.00 Piezometric Surface No. 2 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.50 Y-Water Point X-Water (ft) (ft) No. 237.00 588.35

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

252.00

900.00

2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

```
1000 Trial Surfaces Have Been Generated.
    10 Surface(s) Initiate(s) From Each Of
                                          100 Points Equally Spaced
  Along The Ground Surface Between X = 340.00(ft)
                              and X = 415.00(ft)
  Each Surface Terminates Between X = 600.00(ft) and X = 700.00(ft)
  Unless Further Limitations Were Imposed, The Minimum Elevation
  At Which A Surface Extends Is Y =
                                        0.00(ft)
  22.00(ft) Line Segments Define Each Trial Failure Surface.
  Restrictions Have Been Imposed Upon The Angle Of Initiation.
  The Angle Has Been Restricted Between The Angles Of -45.0
  And 15.0 deg.
  Following Are Displayed The Ten Most Critical Of The Trial
        Failure Surfaces Evaluated. They Are
        Ordered - Most Critical First.
        \star \star Safety Factors Are Calculated By The Modified Bishop Method \star \star
        Total Number of Trial Surfaces Evaluated = 1000
        Statistical Data On All Valid FS Values:
           FS Max = 5.370 FS Min = 2.183
                                               FS Ave =
                                                          2.713
           Standard Deviation = 0.344 Coefficient of Variation = 12.69 %
        Failure Surface Specified By 18 Coordinate Points
          Point
                X-Surf Y-Surf
           No.
                     (ft)
                                 (ft)
                     355.91
                                140.00
            1
                                136.97
                    377.70
            2
                                135.33
            3
                    399.64
                    421.64
            4
                                135.08
                    443.61
                                136.22
            5
                    465.46
                                138.75
            6
            7
                    487.11
                               142.66
            8
                    508.47
                               147.93
                    529.45
                               154.54
            9
                    549.98
           10
                                162.47
           11
                    569.95
                                171.68
                    589.31
                                182.13
           12
                    607.97
                               193.79
           13
                    625.85
                               206.61
           14
                                220.54
                    642.88
           15
           16
                     658.99
                                235.51
           17
                     674.13
                                251.48
                    682.30
                               261.26
           18
        Circle Center At X = 414.66; Y = 481.74; and Radius = 346.76
              Factor of Safety
                     2.183 ***
             Individual data on the
                                    24 slices
                                      Tie Tie
                                                      Earthquake
                      Water Water
                                                      Force Surcharge
                      Force Force
                                             Force
                                      Force
                                              nor (lbs)
                                                     Hor
                                                            Ver Load
Slice Width
              Weiaht
                       Top
                             Bot
                                      Norm
                                             Tan
                                                                    (lbs)
                                     (lbs) (lbs)
                                                             (lbs)
       (ft)
                       (lbs) (lbs)
              (lbs)
No.
                                       0.
                 11.2 5837.3 5898.7
                                                       0.0
                                                               0.0
 1
        1.1
              16494.8 ****** *****
                                                                          0.0
  2
       20.7
                                                         0.0
                                                                 0.0
              50485.6 ****** *****
                                         0.
                                                 0.
                                                         0.0
                                                                 0.0
  3
       21.9
             80622.3 98133.8 ******
                                                 0.
                                                         0.0
                                                                 0.0
                                                                         0.0
                                         0.
       22.0
  4
       22.0 106368.4 85973.9 ******
                                                 0.
                                                         0.0
                                                                 0.0
                                                                         0.0
                                         0.
       21.9 127325.8 73589.8 ******
                                         0.
0.
                                                 0.
0.
                                                                          0.0
                                                         0.0
                                                                 0.0
  6
             143218.9 61174.4 *****
                                                                         0.0
                                                         0.0
                                                                 0.0
  7
       21.7
                                                 0.
       21.4
             153898.0 48915.4 ******
                                         0.
                                                         0.0
                                                                 0.0
                                                                         0.0
  8
       21.0 159341.9 36994.2 ******
                                          0.
                                                 0.
                                                         0.0
                                                                 0.0
                                                                         0.0
  9
       20.5 159658.7 25582.1 ******
                                                                         0.0
                                          Ο.
                                                 0.
                                                         0.0
                                                                 0.0
 10
                                                 0.
       20.0 155080.6 14837.5 94013.8
                                          0.
                                                         0.0
                                                                 0.0
                                                                          0.0
 11
       15.0 113999.8 4618.7 64736.8
                                          0.
                                                         0.0
                                                                 0.0
                                                                         0.0
 12
                                         0.
                                                                 0.0
                                                                         0.0
              24991.6
                       207.1 13339.6
                                                         0.0
 13
        3.3
                        0.0 3751.4
                                         0.
                                                 0.
                                                        0.0
                                                                 0.0
               7174.3
 14
        1.0
                                         0. 0.
0. 0.
0. 0.
                                                                         0.0
                         0.0 67917.9
                                                        0.0
                                                                0.0
 1.5
       18.7 138363.6
```

0.0 6782.6

0.0 45557.4

0.0 35156.6

2.0

17.0

16

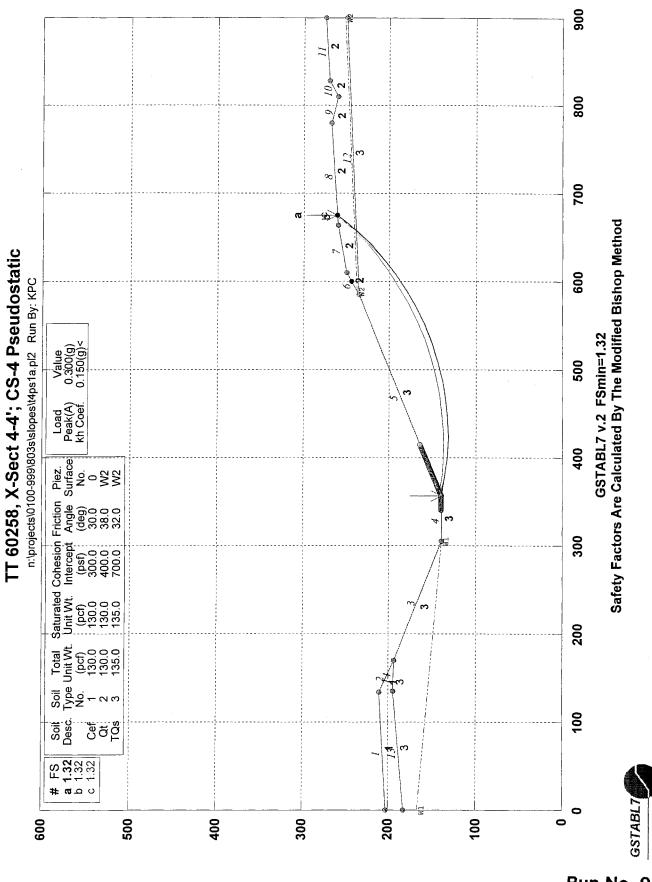
17

18

14934.9

92665.0

15.8 106916.6


```
N:\Projects\0100-999\803S\Slopes\t4s1a.OUT Page 3
                        0.0 16436.6
19
      16.1
             62738.7
                                            0.
                                                    0.
                                                           0.0
                                                                   0.0
                                                                             0.0
20
       3.0
              8673.3
                         0.0 916.1
                                            0.
                                                    0.
                                                           0.0
                                                                   0.0
                                                                             0.0
21
       1.9
              4887.3
                          0.0
                                158.7
                                            0.
                                                    0.
                                                           0.0
                                                                   0.0
                                                                             0.0
              377.3
                          0.0
                                 0.0
                                            0.
                                                    0.
22
       0.2
                                                           0.0
                                                                   0.0
                                                                             0.0
             18719.8
                          0.0
                                                    0.
23
      10.1
                                  0.0
                                            0.
                                                           0.0
                                                                   0.0
                                                                             0.0
24
        8.2
              4893.2
                          0.0
                                 0.0
                                            0.
                                                    0.
                                                           0.0
                                                                   0.0
                                                                             0.0
       Failure Surface Specified By 18 Coordinate Points
          Point
                    X-Surf
                                Y-Surf
          No.
                      (ft)
                                  (ft)
                     355.91
                                 140.00
           1
            2
                     377.55
                                 136.05
            3
                     399.41
                                 133.58
                     421.39
            4
                                 132.60
            5
                     443.38
                                 133.11
                     465.29
            6
                                 135.11
            7
                    487.01
                                 138.60
            8
                    508.45
                                 143.55
           9
                    529.50
                                 149.95
           10
                     550.06
                                 157.77
           11
                     570.05
                                 166.96
          12
                    589.37
                                 177.49
                    607.93
          13
                                 189.30
          14
                     625.64
                                 202.35
          15
                    642.43
                                 216.57
          16
                     658.21
                                 231.90
          17
                     672.91
                                 248.26
                     683.14
          18
                                 261.32
       Circle Center At X = 424.87; Y = 455.95; and Radius = 323.39
              Factor of Safety
                    2.183 ***
       Failure Surface Specified By 19 Coordinate Points
                    X-Surf
          Point
                                Y-Surf
                     (ft)
                                  (ft)
          No.
           1
                    352.12
                                 140.00
           2
                    373.77
                                 136.08
           3
                    395.63
                                 133.58
           4
                    417.60
                                 132.50
           5
                    439.60
                                 132.85
           6
                    461.53
                                 134.63
           7
                    483.29
                                 137.83
           8
                    504.80
                                 142.44
           9
                    525.97
                                 148.44
          10
                    546.70
                                 155.80
                    566.91
                                 164.49
          11
          12
                    586.52
                                 174.48
          13
                    605.43
                                 185.72
                                 198.16
          14
                    623.57
          15
                    640.87
                                 211.76
          16
                    657.24
                                 226.45
          17
                    672.63
                                 242.17
          18
                    686.96
                                 258.86
                    689.12
          19
                                 261.73
       Circle Center At X = 423.19; Y = 470.86; and Radius = 338.41
              Factor of Safety
                    2.184 ***
       Failure Surface Specified By 19 Coordinate Points
         Point
                    X-Surf
                                 Y-Surf
          No.
                     (ft)
                                 (ft)
                    352.88
           1
                                 140.00
           2
                    374.66
                                136.90
           3
                    396.59
                                135.12
           4
                    418.58
                                134.68
           5
                    440.56
                                135.57
           6
                    462.45
                                 137.79
           7
                    484.16
                                141.34
```

9

505.62

526.74

146.20

Run No. 9

** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) ****************** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ***************** Analysis Run Date: Time of Run: KPC Run By: Input Data Filename: N:\Projects\0100-999\803S\Slopes\t4psla.in N:\Projects\0100-999\803S\Slopes\t4ps1a.OUT Output Filename: English Unit System: Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1a.PLT PROBLEM DESCRIPTION: TT 60258, X-Sect 4-4'; CS-4 Pseudostatic BOUNDARY COORDINATES 11 Top Boundaries 14 Total Boundaries Y-Left X-Right Y-Right Soil Type Boundary X-Left (ft) Below Bnd No. (ft) (ft) (ft) 0.00 203.00 134.00 210.00 1 1 134.00 210.00 170.00 194.00 170.00 305.00 140.00 194.00 3 3 305.00 357.00 3 140.00 357.00 140.00 4 5 140.00 585.00 235.00 3 585.00 610.00 235.00 250,00 2 6 7 610.00 250.00 664.00 260.00 2 8 664.00 260.00 780.00 268.00 810.00 9 780.00 268.00 260.00 2 10 810.00 260.00 828.00 270.00 11 828.00 270.00 900.00 275.00 2 900.00 250.00 585.00 235.00 3 12 182.00 0.00 135.00 195.00 13 14 135.00 195.00 170.00 194.00 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (psf) (pcf) (deg) Param. (psf) No. No. (pcf) 130.0 300.0 0.00 0.0 0 1 130.0 30.0 130.0 130.0 400.0 38.0 0.00 0.0 2 2 0.0 2 135.0 135.0 700.0 32.0 0.00 2 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.50 Point X-Water Y-Water (ft) No. (ft) 0.00 167.00 1 305.00 140.00 Piezometric Surface No. 2 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.50 X-Water Y-Water Point (ft) No. (ft) 1 588.35 237.00 900.00 252.00 Specified Peak Ground Acceleration Coefficient (A) = 0.300(g)

Specified Horizontal Earthquake Coefficient (kh) = 0.150(g)

0. 910.0

0.0

0.0

0.

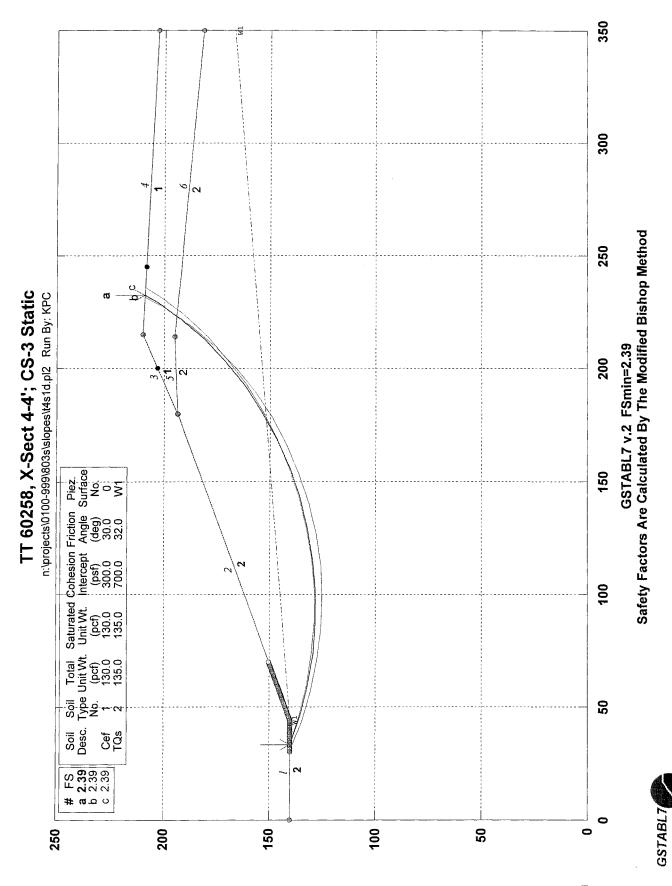
```
Specified Vertical Earthquake Coefficient (kv) =
                                                     0.000(q)
   Specified Seismic Pore-Pressure Factor = 0.000
   A Critical Failure Surface Searching Method, Using A Random
   Technique For Generating Circular Surfaces, Has Been Specified.
   1000 Trial Surfaces Have Been Generated.
                                            100 Points Equally Spaced
     10 Surface(s) Initiate(s) From Each Of
  Along The Ground Surface Between X = 340.00(ft) and X = 415.00(ft)
  Each Surface Terminates Between X = 600.00(ft)
                              and X = 675.00(ft)
  Unless Further Limitations Were Imposed, The Minimum Elevation
  At Which A Surface Extends Is Y = 0.00(ft)
   22.00(ft) Line Segments Define Each Trial Failure Surface.
   Restrictions Have Been Imposed Upon The Angle Of Initiation.
  The Angle Has Been Restricted Between The Angles Of -45.0
  And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
        Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
        Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
           FS Max = 3.175 FS Min = 1.316 FS Ave =
                                                           1.635
            Standard Deviation = 0.218 Coefficient of Variation =
         Failure Surface Specified By 18 Coordinate Points
                    X-Surf
                             Y-Surf
          Point
                      (ft)
           No.
                                 (ft)
            1
                     356.67
                                 140.00
            2
                     378.26
                                 135.81
            3
                     400.11
                                 133.18
            4
                    422.08
                                 132.13
            5
                    444.07
                                 132.67
            6
                    465.97
                                134.78
            7
                    487.66
                                 138.46
            8
                     509.03
                                 143.69
            9
                     529.97
                                 150.45
           10
                    550.37
                                158.69
                     570.12
                                168.38
           11
                     589.13
                                 179.46
           12
           13
                     607.29
                                 191.88
                     624.50
                                 205.57
           14
                     640.70
           15
                                 220.46
                     655.77
                                 236.48
           16
           17
                     669.66
                                 253.55
                     674.70
           18
                                 260.74
                              425.71; Y = 437.37; and Radius = 305.28
        Circle Center At X =
               Factor of Safety
                    1.316 ***
             Individual data on the
                                       24 slices
                                       Tie
                                               Tie
                                                       Earthquake
                       Water Water
                       Force Force
                                       Force
                                               Force
                                                        Force Surcharge
Slice Width
             Weight
                        Top
                              Bot
                                       Norm
                                               Tan
                                                       Hor
                                                               Ver
                                                                    Load
                       (lbs)
                              (lbs)
                                       (lbs)
                                               (lbs)
                                                      (lbs)
                                                               (lbs)
                                                                      (lbs)
No.
       (ft)
               (lbs)
                  1.5 1784.6 1818.6
                                          0.
                                                 0.
                                                         0.2
                                                                0.0
                                                                          0.0
 1
        0.3
              18823.3 ****** ******
                                                   0. 2823.5
                                                                  0.0
                                                                           0.0
                                            0.
       21.3
  2
              55771.5 ****** ******
                                                   0. 8365.7
                                                                  0.0
  3
       21.8
                                           0.
                                                                           0.0
             88643.0 97774.0 ******
                                                   0. 13296.4
                                           0.
                                                                  0.0
                                                                           0.0
  4
       22.0
       22.0 116681.8 85808.7 ******
                                                   0. 17502.3
 5
                                            0.
                                                                  0.0
                                                                           0.0
             139298.4 73465.0 ******
                                                   0. 20894.8
                                                                           0.0
                                           0.
                                                                  0.0
  6
       21.9
       21.7 156078.6 60992.0 ******
                                           0.
                                                  0. 23411.8
                                                                  0.0
                                                                          0.0
 7
       21.4 166792.7 48634.1 ******
                                           0.
                                                  0. 25018.9
                                                                  0.0
                                                                          0.0
 8
       20.9 171400.6 36626.5 ******
                                                   0. 25710.1
                                           0.
                                                                  0.0
                                                                           0.0
 9
       20.4 170049.8 25189.9 ******
                                           0.
                                                   0. 25507.5
                                                                  0.0
                                                                           0.0
10
                                                   0. 24460.8
                                                                          0.0
             163072.0 14526.4 98885.7
11
       19.8
                                           Ο.
                                                                  0.0
       14.9 118892.0 4533.3 68458.0
                                                  0. 17833.8
                                                                  0.0
                                                                           0.0
                                           0.
12
             26204.5 206.3 14234.0
                                           0.
                                                  0. 3930.7
                                                                  0.0
                                                                           0.0
```

3.3

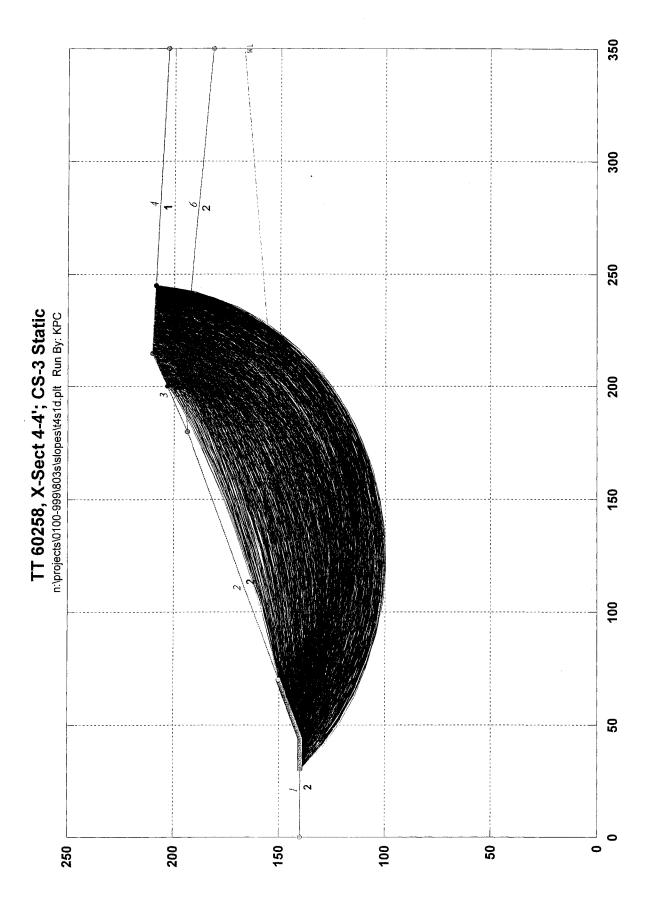
0.8

6066.5

0.0 3233.9


```
N:\Projects\0100-999\803S\Slopes\t4ps1a.OUT Page 3
     18.2 139704.5
                      0.0 71040.0
                                           0.
                                                   0. 20955.7
                                                                  0.0
                                                                           0.0
15
                                          0.
                                                   0. 3064.8
0. 14977.7
                       0.0 9733.4
                                                                 0.0
                                                                          0.0
            20432.3
16
       2.7
            99851.5
                         0.0 44571.8
                                          0.
                                                                  0.0
                                                                          0.0
      14.5
17
                                          0.
                                                   0. 13292.5
                         0.0 35808.0
                                                                 0.0
                                                                          0.0
18
      16.2
             88616.9
                        0.0 15644.1
                                         0.
             56793.5
                                                  0. 8519.0
                                                                 0.0
                                                                          0.0
19
      15.1
       1.6
             4401.8
                        0.0 444.6
                                         0.
                                                 0. 660.3
                                                                 0.0
                                                                          0.0
20
                                                 0. 604.1
0. 1576.3
0. 1117.9
0. 336.3
                                         0.
                                                                 0.0
                                                                          0.0
                              147.2
       1.6
             4027.5
                        0.0
21
                                          0.
                              0.0
       5.0
            10508.4
                         0.0
                                                                 0.0
                                                                          0.0
22
       5.7
            7452.
2241.8
              7452.6
                         0.0
                                 0.0
                                           0.
                                                                 0.0
                                                                          0.0
23
                       0.0
                                0.0
                                                                 0.0
                                                                          0.0
                                           0.
24
        5.0
        Failure Surface Specified By 18 Coordinate Points
                    X-Surf
                                Y-Surf
          Point
                                 (ft)
          No.
                     (ft)
                                140.18
           1
                    357.42
            2
                    379.00
                                135.87
                    400.83
                                133.15
            3
            4
                    422.80
                                132.04
            5
                    444.80
                                132.54
            6
                    466.69
                                134.66
                    488.38
                                138.37
            7
            8
                    509.73
                                143.66
           9
                    530.64
                               150.51
           10
                    550.99
                                158.87
                               168.69
           11
                    570.67
          12
                    589.58
                                179.94
                    607.62
                                192.54
           13
                                206.43
           14
                    624.68
          15
                    640.67
                                221.53
           16
                     655.52
                                237.77
                                255.04
                    669.14
          17
           18
                    672.90
                                260.61
        Circle Center At X = 426.97; Y = 431.41; and Radius = 299.42
              Factor of Safety
                    1.319 ***
        Failure Surface Specified By 17 Coordinate Points
                    X-Surf
                              Y-Surf
          Point
          No.
                     (ft)
                                 (ft)
                    361.21
                                141.75
           1
           2
                    383.02
                                138.89
                    404.98
                                137.47
                    426.98
                                137.50
            4
                    448.93
            5
                                138.97
            6
                    470.74
                                141.89
            7
                    492.30
                               146.23
           8
                    513.54
                               151.98
           9
                    534.35
                               159.12
           10
                    554.64
                                167.62
                    574.33
                                177.43
           11
           12
                    593.33
                                188.51
                    611.57
                                200.83
           13
                    628.95
                                214.31
          14
                                228.91
          15
                    645.41
                    660.87
                                244.56
          16
           17
                    674.87
                                260.75
        Circle Center At X = 415.58; Y = 471.39; and Radius = 334.09
             Factor of Safety
                    1.319 ***
        Failure Surface Specified By 18 Coordinate Points
                    X-Surf Y-Surf
          Point
                                 (ft)
          No.
                     (ft)
                    348.33
                                140.00
           1
                    370.08
                                136.69
            2
                    392.00
                                134.78
           3
                    413.99
                                134.30
           4
                    435.97
                                135.25
```

137.61

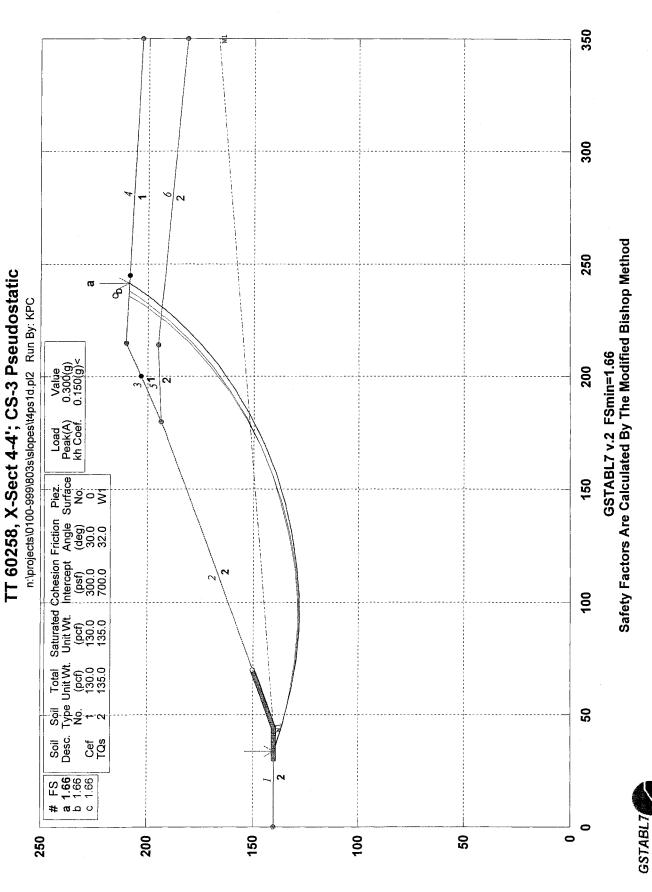

141.39

6

457.85 479.52

Run No. 10


```
** GSTABL7 by Garry H. Gregory, P.E. **
    ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
                (All Rights Reserved-Unauthorized Use Prohibited)
 **************************
                    SLOPE STABILITY ANALYSIS SYSTEM
       Modified Bishop, Simplified Janbu, or GLE Method of Slices.
        (Includes Spencer & Morgenstern-Price Type Analysis)
       Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
       Nonlinear Undrained Shear Strength, Curved Phi Envelope,
       Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
       Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
 Analysis Run Date:
 Time of Run:
                         KPC
 Run By:
                        N:\Projects\0100-999\803S\Slopes\t4s1d.in
 Input Data Filename:
 Output Filename:
                        N:\Projects\0100-999\803S\Slopes\t4s1d.OUT
 Unit System:
                         English
 Plotted Output Filename: N:\Projects\0100-999\803S\Slopes1d.PLT
 PROBLEM DESCRIPTION: TT 60258, X-Sect 4-4'; CS-3 Static
 BOUNDARY COORDINATES
    4 Top Boundaries
    6 Total Boundaries
                                                      Soil Type
Boundary X-Left
                       Y-Left
                               X-Right Y-Right
             (ft)
                                (ft)
                        (ft)
                                             (ft)
                                                      Below Bnd
   No.
              0.00
    1
                        140.00
                                   44.00
                                            140.00
             44.00 140.00
                                180.00
                                            194.00
                                                         2
            180.00
                      194.00
                                215.00
                                           210.00
                                350.00
                                           203.00
            215.00
                       210.00
    4
                                                         1
            180.00
    5
                       194.00
                                 214.00
                                            195.00
                                                         2
                     195.00
             214.00
                                  350.00
                                            182.00
 Default Y-Origin = 0.00(ft)
 Default X-Plus Value = 0.00(ft)
 Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
 2 Type(s) of Soil
 Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
 No. (pcf) (pcf)
                       (psf)
                                (deg) Param. (psf)
                                                          No.
                                 30.0
                        300.0
                                                    0.0
  1
      130.0
               130.0
                                         0.00
                                                            Ω
                                32.0
      135.0
              135.0
                        700.0
                                         0.00
                                                    0.0
                                                            1
  2
 1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
 Piezometric Surface No. 1 Specified by 2 Coordinate Points
 Pore Pressure Inclination Factor = 0.50
         X-Water Y-Water
  Point
   No.
               (ft)
                          (ft)
              44.00
                       140.00
    1
             350.00
                       167.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
  10 Surface(s) Initiate(s) From Each Of
                                         100 Points Equally Spaced
Along The Ground Surface Between X = 30.00(ft)
and X = 70.00(ft)
Each Surface Terminates Between X = 200.00(ft)
                           and X = 245.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y =
                                   0.00(ft)
14.00(ft) Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
The Angle Has Been Restricted Between The Angles Of -45.0
And 15.0 deg.
Following Are Displayed The Ten Most Critical Of The Trial
      Failure Surfaces Evaluated. They Are
```


Ordered - Most Critical First.

```
Statistical Data On All Valid FS Values:
            FS Max = 5.409 FS Min = 2.390 FS Ave =
                                                            2.800
            Standard Deviation = 0.301 Coefficient of Variation =
                                                                        10.75 %
         Failure Surface Specified By 18 Coordinate Points
                     X-Surf
           Point
                                 Y-Surf
            No.
                      (ft)
                                  (ft)
             1
                      33.23
                                 140.00
                                 135.24
             2
                      46.40
             3
                      59.93
                                 131.65
             4
                      73.73
                                 129.27
                                 128.11
             5
                      87.68
             6
                     101.68
                                 128.18
             7
                     115.62
                                 129.49
             8
                     129.39
                                 132.01
             9
                     142.88
                                 135.74
            10
                     155.99
                                 140.64
            11
                     168.62
                                 146.68
                     180.68
            12
                                 153.81
            13
                     192.05
                                 161.97
                      202.67
                                 171.09
            14
            15
                      212.44
                                 181.12
            16
                      221.29
                                 191.97
            17
                      229.15
                                 203.55
                      232.24
                                 209.11
            18
         Circle Center At X =
                                93.83 ; Y =
                                             286.59; and Radius = 158.62
               Factor of Safety
                      2.390
                                       23 slices
              Individual data on the
                        Water Water
                                        Tie
                                               Tie
                                                        Earthquake
                        Force Force
                                               Force
                                       Force
                                                         Force Surcharge
Slice Width
              Weight
                        qoT
                               Bot
                                       Norm
                                                Tan
                                                        Hor
                                                              Ver
                                                                     Load
No.
       (ft)
               (lbs)
                        (lbs)
                              (lbs)
                                        (lbs)
                                                (lbs)
                                                       (lbs)
                                                               (lbs)
                                                                       (lbs)
                                                 0.
                                          0.
       10.8
               2832.5
                         0.0 1048.8
                                                         0.0
                                                                  0.0
                                                                            0.0
 1
 2
        2.4
               1555.2
                          0.0
                               702.9
                                            0.
                                                    0.
                                                           0.0
                                                                   0.0
                                                                            0.0
                          0.0 6410.7
                                                   0.
               18627.9
 3
        13.5
                                            0.
                                                           0.0
                                                                   0.0
                                                                            0.0
                          0.0 10057.5
                                            0.
                                                   0.
       13.8
              34654.1
                                                           0.0
                                                                   0.0
                                                                            0.0
 4
              48757.4
                          0.0 12663.8
                                            0.
 5
       14.0
                                                   0.
                                                           0.0
                                                                  0.0
                                                                            0.0
                                           0.
  6
       14.0
              60438.6
                          0.0 14209.3
                                                   0.
                                                           0.0
                                                                  0.0
                                                                            0.0
                                                                            0.0
                          0.0 14682.1
                                            0.
                                                   0.
 7
       13.9
              69316.6
                                                           0.0
                                                                  0.0
                          0.0 14078.5
                                            0.
                                                   0.
 8
       13.8
              75140.6
                                                           0.0
                                                                   0.0
                                                                            0.0
              77797.6
                          0.0 12403.1
                                           0.
                                                   0.
 9
       13.5
                                                           0.0
                                                                   0.0
                                                                            0.0
       13.1
              77315.0
                          0.0 9669.0
                                           0.
                                                   0.
                                                          0.0
                                                                   0.0
                                                                            0.0
10
11
       12.6
              73859.5
                         0.0 5897.5
                                          0.
                                                   0.
                                                          0.0
                                                                   0.0
                                                                            0.0
                         0.0 1336.7
                                           0.
                                                   0.
        8.6
              48604.7
                                                          0.0
                                                                  0.0
                                                                            0.0
12
        2.8
              15427.6
                                           0.
13
                          0.0
                                  0.0
                                                   0.
                                                           0.0
                                                                   0.0
                                                                            0.0
14
        0.7
               3699.5
                          0.0
                                  0.0
                                            0.
                                                   0.
                                                           0.0
                                                                   0.0
                                                                            0.0
              59781.5
                                0.0
                                           0.
                          0.0
                                                   0.
                                                          0.0
                                                                  0.0
                                                                            0.0
15
       11.4
                                                   0.
                                                          0.0
       10.6
              50344.0
                          0.0
                                 0.0
                                           Ο.
16
                                                                  0.0
                                                                            0.0
                                           0.
                                                   0.
              39638.3
                          0.0
                                 0.0
                                                          0.0
                                                                  0.0
                                                                           0.0
17
        9.8
18
        1.6
               5605.2
                          0.0
                                  0.0
                                           Ο.
                                                   0.
                                                           0.0
                                                                  0.0
                                                                           0.0
               3452.6
                          0.0
                                  0.0
                                            0.
                                                   0.
                                                           0.0
                                                                  0.0
                                                                            0.0
19
        1.0
                                                   0.
                                                           0.0
                                                                           0.0
20
        6.3
              17960.2
                          0.0
                                  0.0
                                            0.
                                                                  0.0
        1.5
               3213.6
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                           0.0
                                                                  0.0
                                                                            0.0
21
22
        6.4
               8760.6
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                           0.0
                                                                   0.0
                                                                            0.0
                                            0.
                          0.0
                                  0.0
                                                   0.
               1148.1
                                                           0.0
                                                                   0.0
                                                                            0.0
23
        3.1
        Failure Surface Specified By 18 Coordinate Points
          Point
                    X-Surf
                               Y-Surf
           No.
                      (ft)
                                  (f+)
                      30.81
                                 140.00
            2
                      43.67
                                 134.48
            3
                      56.99
                                 130.17
                      70.66
                                 127.13
            5
                      84.55
                                 125.37
                      98.54
                                 124.91
                     112.52
                                 125.75
```

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Total Number of Trial Surfaces Evaluated = 1000

```
127.89
    8
             126.35
                         131.31
    9
             139.93
             153.13
                         135.98
   10
             165.83
                         141.85
   11
   12
             177.94
                         148.88
                         157.01
             189.34
   13
   14
             199.93
                         166.16
   15
             209.63
                         176.26
                         187.22
             218.34
   16
             226.00
                         198.94
   17
                         209.15
   18
             231.39
Circle Center At X =
                                       275.03 ; and Radius =
                                                              150.15
                         96.47 ; Y =
       Factor of Safety
             2.390 ***
Failure Surface Specified By 18 Coordinate Points
  Point
             X-Surf
                         Y-Surf
                          (ft)
             (ft)
   No.
              33.23
                          140.00
    1
                          135.44
    2
              46.47
              60.05
                          132.02
    3
    4
             73.86
                          129.75
                          128.66
    5
              87.82
    6
             101.82
                          128.74
    7
             115.76
                          130.01
                          132.45
             129.55
    8
                         136.04
    9
             143.08
   10
             156.26
                          140.76
   11
             169.00
                          146.57
                          153.43
             181.20
   12
   13
             192.78
                          161.30
                          170.12
             203.65
   14
                          179.82
   15
             213.74
                          190.34
   16
             222.98
                          201.60
             231.30
   17
             235.80
                          208.92
   18
                                       294.17 ; and Radius =
                                                              165.64
                         93.79 ; Y =
Circle Center At X =
       Factor of Safety
            2.393 ***
Failure Surface Specified By 18 Coordinate Points
             X-Surf
                         Y-Surf
  Point
                           (ft)
   No.
              (ft)
                          140.00
    1
              30.81
              43.88
                          134.98
    2
    3
              57.36
                          131.20
                          128.68
              71.13
    4
    5
              85.07
                          127.44
                          127.51
    6
              99.07
                          128.86
             113.01
    7
             126.76
                          131.51
    8
                          135.41
    9
             140.20
                          140.54
   10
             153.23
             165.72
                          146.86
   11
             177.58
                          154.30
   12
             188.69
                          162.82
   13
             198.97
                          172.32
   14
   15
             208.33
                          182.73
                          193.97
             216.68
   16
   17
             223.95
                          205.93
                          209.45
             225.67
   18
                                       278.10 ; and Radius =
                                                               150.81
Circle Center At X =
                         91.39 ; Y =
       Factor of Safety
             2.394 ***
Failure Surface Specified By 18 Coordinate Points
                          Y-Surf
  Point
             X-Surf
                           (ft)
              (ft)
   No.
                          140.00
              32.42
    1
                          134.68
    2
              45.37
```


Run No. 11

```
** GSTABL7 by Garry H. Gregory, P.E. **
    ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
               (All Rights Reserved-Unauthorized Use Prohibited)
 ******************
                    SLOPE STABILITY ANALYSIS SYSTEM
       Modified Bishop, Simplified Janbu, or GLE Method of Slices.
        (Includes Spencer & Morgenstern-Price Type Analysis)
       Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
       Nonlinear Undrained Shear Strength, Curved Phi Envelope,
       Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
       Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
 ******************
Analysis Run Date:
Time of Run:
                         KPC
Run By:
Input Data Filename:
                        N:\Projects\0100-999\803S\Slopes\t4ps1d.in
Output Filename:
                        N:\Projects\0100-999\803S\Slopes\t4ps1d.OUT
                         English
Unit System:
Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1d.PLT
PROBLEM DESCRIPTION: TT 60258, X-Sect 4-4'; CS-3 Pseudostatic
BOUNDARY COORDINATES
    4 Top Boundaries
    6 Total Boundaries
Boundary X-Left
                       Y-Left
                                          Y-Right
                                                       Soil Type
                                 X-Right
             (ft)
                         (ft)
                                 (ft)
                                              (ft)
                                                       Below Bnd
   No.
    1
              0.00
                        140.00
                                   44.00
                                             140.00
                                                           2
             44.00
                       140.00
                                  180.00
                                            194.00
                                                           2
            180.00
                       194.00
                                  215.00
                                            210.00
                                                           1
                                           203.00
            215.00
                        210.00
                                  350.00
                                                           1
    4
                                            195.00
182.00
    5
             180.00
                        194.00
                                  214.00
                                                           2
             214.00
                        195.00
                                  350.00
                                                           2
Default Y-Origin = 0.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
 2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore
                                                  Pressure
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
              (pcf)
                       (psf)
                                  (deg)
                                          Param. (psf)
                                                             No.
 No. (pcf)
  1
      130.0
               130.0
                         300.0
                                 30.0
                                          0.00
                                                     0.0
                                                              Ω
                                                    0.0
                        700.0
                                 32.0
                                          0.00
              135.0
                                                              1
  2
      135.0
1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 2 Coordinate Points
Pore Pressure Inclination Factor = 0.50
                       Y-Water
  Point
            X-Water
               (ft)
   No.
                          (ft.)
              44.00
                         140.00
    1
             350.00
                        167.00
Specified Peak Ground Acceleration Coefficient (A) = 0.300(g)
Specified Horizontal Earthquake Coefficient (kh) = 0.150(g)
Specified Vertical Earthquake Coefficient (kv) =
                                                 0.000(g)
Specified Seismic Pore-Pressure Factor = 0.000
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
                                         100 Points Equally Spaced
  10 Surface(s) Initiate(s) From Each Of
Along The Ground Surface Between X = 30.00(ft)
and X = 70.00(ft)
Each Surface Terminates Between X = 200.00(ft)
                           and X = 245.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
14.00(ft) Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
```

The Angle Has Been Restricted Between The Angles Of -45.0

```
And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
        Failure Surfaces Evaluated. They Are
        Ordered - Most Critical First.
        * * Safety Factors Are Calculated By The Modified Bishop Method * *
        Total Number of Trial Surfaces Evaluated = 1000
        Statistical Data On All Valid FS Values:
                      3.873 FS Min = 1.662 FS Ave = 1.960
            FS Max =
            Standard Deviation = 0.218 Coefficient of Variation = 11.13 %
        Failure Surface Specified By 18 Coordinate Points
                     X-Surf
                                Y-Surf
          Point
           No.
                      (ft)
                                 (ft)
            1
                      33.64
                                 140.00
                      46.87
            2
                                 135.43
            3
                      60.43
                                 131.96
            4
                      74.23
                                129.61
            5
                      88.18
                                128.39
            6
                    102.18
                                128.31
            7
                    116.14
                                129.38
            8
                     129.97
                                131.58
            9
                     143.57
                                134.91
                    156.85
                                139.33
           10
                    169.73
                                144.83
           11
           12
                    182.11
                                151.35
                     193.92
           13
                                158.87
                     205.08
           14
                                167.32
           15
                     215.51
                                176.66
           16
                     225.15
                                186.82
           17
                     233.92
                                197.73
                                208.64
           18
                     241.31
        Circle Center At X =
                              96.11 ; Y = 299.49 ; and Radius = 171.29
               Factor of Safety
                    1.662
                                      23 slices
             Individual data on the
                       Water Water
                                       Tie
                                              Tie
                                                       Earthquake
                       Force Force
                                      Force
                                              Force
                                                       Force Surcharge
Slice Width
             Weight
                        Top
                              Bot
                                      Norm
                                               Tan
                                                       Hor
                                                              Ver
                                                                   Load
       (ft)
               (lbs)
                       (lbs)
                             (lbs)
                                       (lbs)
                                              (lbs)
                                                      (lbs)
                                                              (lbs)
                                                                     (lbs)
No.
                                         0.
                         0.0 907.1
                                               0.
                                                      375.3
                                                                0.0
                                                                        0.0
 1
       10.4
               2502.0
                          0.0 792.5
                                           0.
                                                   0.
                                                      269.8
                                                                 0.0
                                                                          0.0
       2.9
               1798.7
 2
                                                                 0.0
                                                                          0.0
       13.6
              18557.6
                         0.0 6226.2
                                           0.
                                                   0. 2783.6
                                           0.
                         0.0 9811.1
                                                   0. 5164.6
                                                                 0.0
                                                                          0.0
              34430.7
       13.8
                                                       7279.4
 5
       13.9
              48529.2
                         0.0 12430.4
                                           0.
                                                   0.
                                                                 0.0
                                                                          0.0
              60422.5
                         0.0 14066.5
                                           0.
                                                  0.
                                                       9063.4
                                                                 0.0
                                                                          0.0
       14 0
```

Ö	14.0	00422.5	0.0	T4000.2	0.	Ο.	5005.4	0.0	0.0
7	14.0	69773.9	0.0	14708.6	0.	0.	10466.1	0.0	0.0
8	13.8	76349.1	0.0	14352.4	0.	0.	11452.4	0.0	0.0
9	13.6	80023.1	0.0	13000.2	0.	0.	12003.5	0.0	0.0
10	13.3	80782.5	0.0	10661.0	0.	0.	12117.4	0.0	0.0
11	12.9	78725.8	0.0	7350.6	0.	0.	11808.9	0.0	0.0
12	10.3	61626.3	0.0	2898.3	0.	0.	9243.9	0.0	0.0
13	2.1	12446.7	0.0	192.6	0.	0.	1867.0	0.0	0.0
14	1.5	8937.2	0.0	46.9	0.	0.	1340.6	0.0	0.0
15	10.3	58721.1	0.0	0.0	0.	0.	8808.2	0.0	0.0
16	11.2	59525.2	0.0	0.0	0.	0.	8928.8	0.0	0.0
17	8.9	43009.6	0.0	0.0	0.	0.	6451.4	0.0	0.0
18	1.0	4518.8	0.0	0.0	0.	0.	677.8	0.0	0.0
19	0.5	2288.6	0.0	0.0	0.	0.	343.3	0.0	0.0
20	9.6	35663.5	0.0	0.0	0.	0.	5349.5	0.0	0.0
21	5.3	13374.3	0.0	0.0	0.	0.	2006.1	0.0	0.0
22	3.5	6081.9	0.0	0.0	0.	0.	912.3	0.0	0.0
23	7.4	5426.9	0.0	0.0	0.	0.	814.0	0.0	0.0
	Failu	re Surface	Specif	ied By 18	Coordinate	Poi	nts		

Y-Surf

(ft)

140.00

135.62

132.34

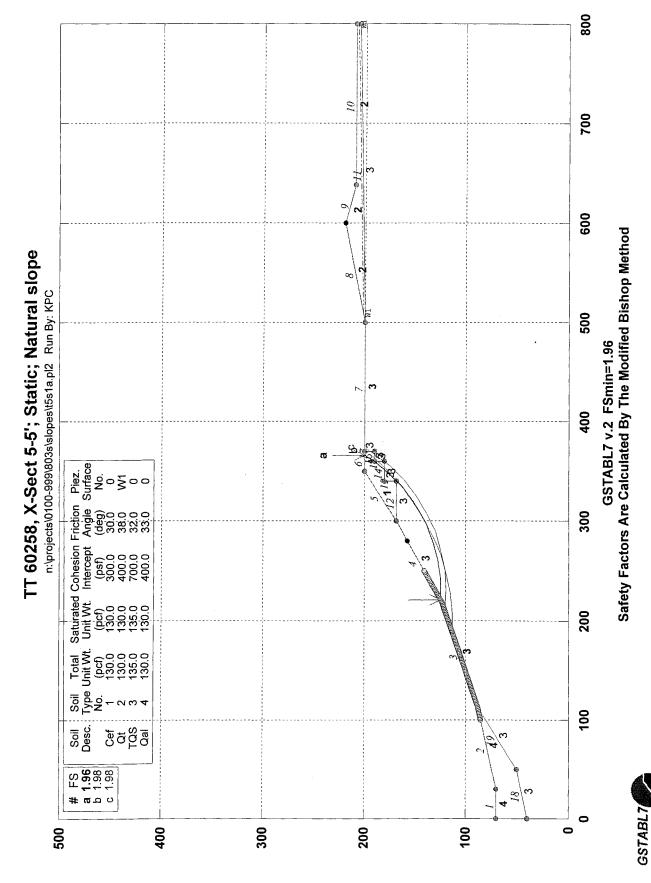
X-Surf

(ft)

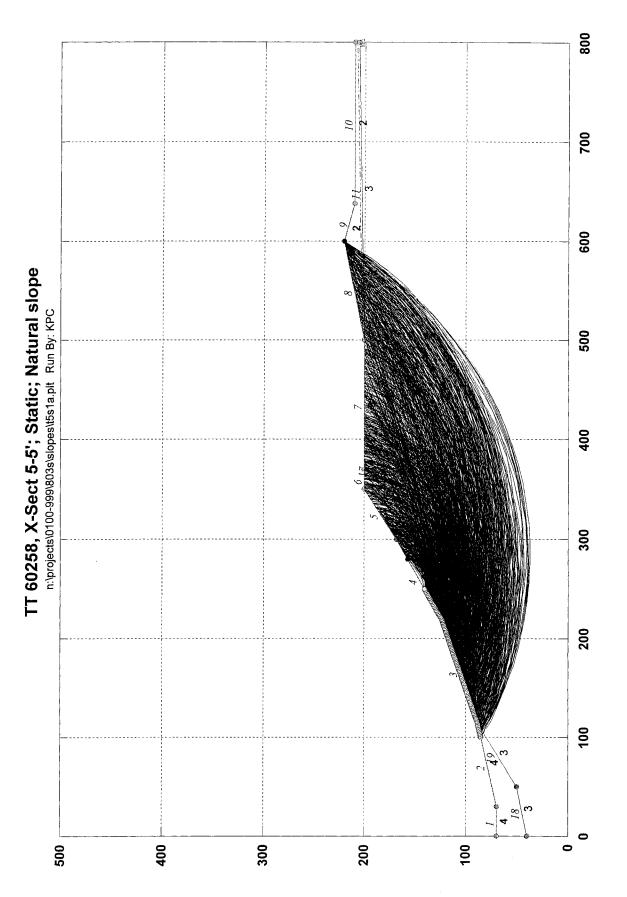
32.83

46.13

59.74


Point

No.


1 2

3

```
N:\Projects\0100-999\803S\Slopes\t4ps1d.OUT Page 3
              73.57
                         130.18
    4
    5
              87.53
                         129.15
    6
             101.53
                         129.26
    7
             115.48
                         130.51
    8
             129.27
                         132.89
    9
             142.83
                         136.39
   10
             156.06
                         140.97
   11
             168.87
                         146.62
   12
             181.18
                         153.29
   13
             192.90
                         160.94
   1.4
             203.97
                         169.52
   15
             214.30
                         178.97
   16
             223.82
                         189.23
   17
             232.48
                         200.23
   18
             238.17
                         208.80
Circle Center At X =
                        93.17 ; Y =
                                      300.74; and Radius = 171.69
       Factor of Safety
             1.662
Failure Surface Specified By 18 Coordinate Points
  Point
             X-Surf
                        Y-Surf
   No.
              (ft)
                          (ft)
              33.23
                         140.00
    1
              46.47
                         135.44
    3
              60.05
                         132.02
    4
              73.86
                         129.75
    5
              87.82
                         128.66
    6
             101.82
                         128.74
    7
            115.76
                         130.01
    8
            129.55
                         132.45
    9
             143.08
                         136.04
   10
             156.26
                         140.76
   11
             169.00
                         146.57
   12
             181.20
                         153.43
   13
             192.78
                         161.30
   14
             203.65
                         170.12
   15
             213.74
                         179.82
   16
             222.98
                         190.34
   17
             231.30
                         201.60
                         208.92
   18
             235.80
Circle Center At X =
                        93.79 ; Y =
                                      294.17; and Radius = 165.64
      Factor of Safety
            1.662
Failure Surface Specified By 18 Coordinate Points
                        Y-Surf
           X-Surf
  Point
   No.
              (ft)
                          (ft)
    1
              34.44
                         140.00
              47.68
    2
                         135.45
    3
              61.25
                         131.99
    4
              75.05
                         129.64
    5
             89.00
                         128.41
    6
             103.00
                         128.32
    7
             116.96
                         129.36
             130.79
    8
                         131.53
    9
             144.40
                         134.81
   10
             157.70
                         139.18
             170.60
                         144.62
   11
   12
            183.02
                         151.08
   13
             194.87
                         158.53
   14
             206.09
                         166.91
   15
             216.58
                         176.18
             226.30
   16
                         186.26
   17
             235.16
                         197.10
  18
             243.07
                         208.54
Circle Center At X =
                        97.14 ; Y =
                                     300.94; and Radius = 172.72
      Factor of Safety
             1.663
Failure Surface Specified By 18 Coordinate Points
```


Run No. 12


```
*** GSTABL7 ***
                         ** GSTABL7 by Garry H. Gregory, P.E. **
     ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
                  (All Rights Reserved-Unauthorized Use Prohibited)
 *****************
                        SLOPE STABILITY ANALYSIS SYSTEM
         Modified Bishop, Simplified Janbu, or GLE Method of Slices.
         (Includes Spencer & Morgenstern-Price Type Analysis)
         Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope,
         Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
         Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
 Analysis Run Date:
 Time of Run:
 Run By:
                             KPC
 Input Data Filename: N:\Projects\0100-999\803S\Slopes\t5s1a.in
Output Filename: N:\Projects\0100-999\803S\Slopes\t5s1a.OUT
Unit System: English
                             English
 Plotted Output Filename: N:\Projects\0100-999\803S\Slopes1a.PLT
 PROBLEM DESCRIPTION: TT 60258, X-Sect 5-5'; Static;
                          Natural slope
 BOUNDARY COORDINATES
    10 Top Boundaries
    19 Total Boundaries
            X-Left
 Boundary
                            Y-Left X-Right Y-Right
                                                                Soil Type
                           (ft) (ft) (ft)
70.00 30.00 70.00
               (ft)
    No.
                                                                Below Bnd
     1
                0.00
                                                                   4
                        70.00 30.00 70.00

70.00 113.00 88.00

88.00 219.00 123.00

123.00 300.00 168.00

168.00 350.00 200.00

200.00 370.00 200.00

200.00 500.00 200.00
               30.00
     3
              113.00
                                                                     .3
              219.00
300.00
350.00
     4
                                                                     3
     5
                                                                     1
     6
                                                                     1
              370.00
     7
                                                                     3
     8
              500.00
                           200.00 600.00
                                                    220.00
                        220.00 638.00
210.00 800.00
200.00 800.00
168.00 340.00
             600.00
     9
                                                    210.00
                                                                     2
                                                    210.00
    10
              638.00
500.00
                                                                     2
    11
                                                    206.00
              300.00
                                                    168.00
    12
                        168.00 340.10
180.00 360.00
180.00 360.10
190.00 369.90
    13
              340.00
                                                   180.00
              340.10
                                                   180.00
    14
                                                   190.00
    15
               360.00
                                                                     3
                        190.00 370.00
40.00 50.00
               360.10
                                                     190.00
    16
                                        370.00 200.00
50.00 50.00
    17
               369.90
                                                                     3
    18
                0.00
                                                                     3
                                                   88.00
                50.00
                            50.00
                                       113.00
Default Y-Origin = 0.00(ft)
 Default X-Plus Value = 0.00(ft)
 Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
  4 Type(s) of Soil
 Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
 No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 130.0 130.0 300.0 30.0 0.00 0.0 0 0.0 2 130.0 130.0 400.0 38.0 0.00 0.0 1
                                                           0.0
      135.0 135.0 700.0 32.0 0.00
130.0 130.0 400.0 33.0 0.00
                                                            0.0
                                                                       0
                                                             0.0
                                                                        Ω
1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 2 Coordinate Points
Pore Pressure Inclination Factor = 0.50
   Point
              X-Water
                           Y-Water
    No.
                 (ft)
                              (ft)
                            202.00
     1
               510.00
```

208.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

```
1000 Trial Surfaces Have Been Generated.
     10 Surface(s) Initiate(s) From Each Of
                                             100 Points Equally Spaced
   Along The Ground Surface Between X = 100.00(ft)
                                and X = 250.00(ft)
   Each Surface Terminates Between X = 280.00(ft)
                                    X = 600.00(ft)
                               and
   Unless Further Limitations Were Imposed, The Minimum Elevation
   At Which A Surface Extends Is Y =
                                          0.00(ft)
   20.00(ft) Line Segments Define Each Trial Failure Surface.
   Restrictions Have Been Imposed Upon The Angle Of Initiation.
   The Angle Has Been Restricted Between The Angles Of -30.0
   And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
            FS Max =
                       8.223 FS Min = 1.956
                                                  FS Ave =
                                                             2.865
            Standard Deviation = 0.662 Coefficient of Variation = 23.12 %
         Failure Surface Specified By 10 Coordinate Points
                     X-Surf
           Point
                                 Y-Surf
           No.
                      (ft)
                                   (ft)
             1
                      221.21
                                  124.23
             2
                     241.21
                                  124.19
             3
                     261.06
                                 126.69
             4
                     280.42
                                 131.69
             5
                     298.99
                                 139.11
             6
                     316.47
                                  148.83
             7
                     332.57
                                  160.69
             8
                     347.04
                                 174.50
                     359.63
                                 190.04
           10
                     365.79
                                 200.00
                              231.73 ; Y =
                                              279.99 ; and Radius =
         Circle Center At X =
                                                                     156.11
               Factor of Safety
                    1.956
              Individual data on the
                                       14 slices
                       Water Water
                                        Tie
                                                Tie
                                                        Earthquake
                       Force Force
                                       Force
                                                Force
                                                          Force Surcharge
Slice Width
              Weight
                        qoT
                               Bot
                                       Norm
                                                Tan
                                                        Hor
                                                                Ver
                                                                      Load
No.
       (ft)
               (lbs)
                        (lbs)
                              (lbs)
                                        (lbs)
                                                (lbs)
                                                        (lbs)
                                                                (lbs)
                                                                        (lbs)
       20.0
              15055.8
                         0.0
                                 0.0
                                           0.
                                                   0.
                                                          0.0
                                                                  0.0
                                                                           0.0
 1
       19.8
                                                    0.
              41293.0
                          0.0
                                   0.0
                                            0.
                                                           0.0
                                                                    0.0
                                                                             0.0
       19.4
                                                    0.
 3
              58965.6
                          0.0
                                  0.0
                                            0.
                                                           0.0
                                                                    0.0
                                                                             0.0
       18.6
              67404.2
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                           0.0
                                                                    0.0
 4
                                                                             0.0
 5
        1.0
               3853.1
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                           0.0
                                                                    0.0
                                                                             0.0
                                            0.
       16.5
              64104.5
                          0.0
                                  0.0
                                                    0.
                                                           0.0
 6
                                                                    0.0
                                                                             0.0
 7
       16.1
              61640.6
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                           0.0
                                                                    0.0
                                                                             0.0
                                            0.
 8
       7.4
              26192.2
                          0.0
                                  0.0
                                                    0.
                                                           0.0
                                                                    0.0
               338.6
                          0.0
                                            0.
 9
        0.1
                                  0.0
                                                    0.
                                                           0.0
                                                                    0.0
                                                                             0.0
                                            0.
10
        6.9
              22588.5
                          0.0
                                  0.0
                                                    0 -
                                                           0.0
                                                                    0.0
                                                                             0.0
        3.0
               8798.7
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                           0.0
                                                                    0.0
                                                                             0.0
11
                          0.0
                                            0.
               4080.5
                                                    0.
                                                                    0.0
12
        1.5
                                  0.0
                                                           0.0
                                                                             0.0
              15845.6
                          0.0
                                  0.0
                                            0.
1.3
        8.1
                                                           0.0
                                                                    0.0
                                                                             0.0
14
        6.2
               3988.3
                          0.0
                                  0.0
                                            0.
                                                    0.
                                                           0.0
                                                                    0.0
                                                                             0.0
        Failure Surface Specified By 12 Coordinate Points
          Point
                     X-Surf
                               Y-Surf
           No.
                      (ft)
                                  (ft)
                     187.88
            1
                                 112.72
            2
                     207.88
                                 112.95
            3
                     227.77
                                 114.98
            4
                     247.41
                                 118.80
            5
                     266.61
                                 124.39
            6
                     285.23
                                 131.68
```

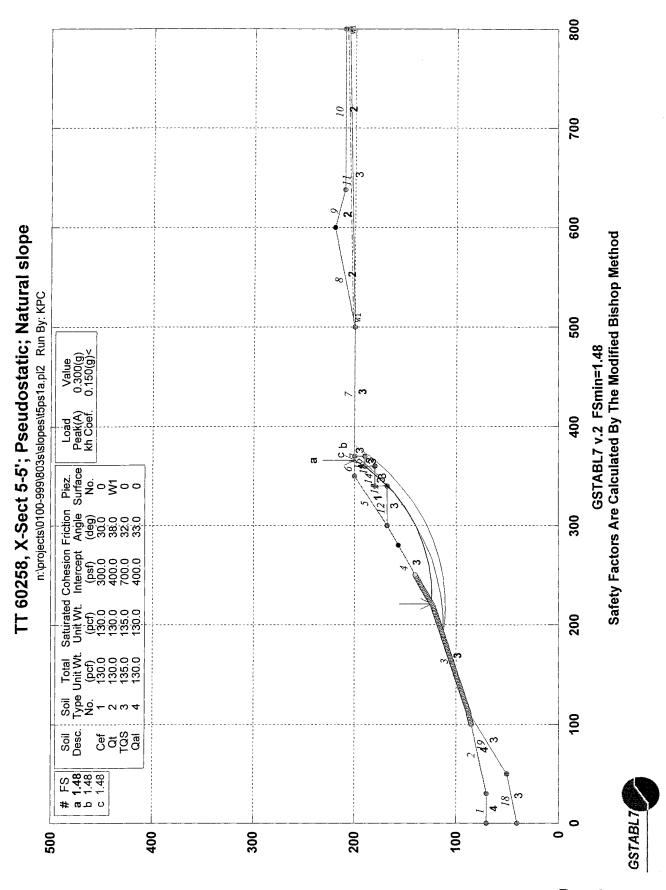
7

8

9

303.11

320.11


336.09

140.64

151.17

```
10
             350.91
                        176.63
                       191.34
   11
             364.46
   12
            371.09
                        200.00
Circle Center At X = 195.61; Y = 332.44; and Radius = 219.85
      Factor of Safety
           1.976 ***
Failure Surface Specified By 11 Coordinate Points
  Point
            X-Surf
                       Y-Surf
   No.
             (ft)
                         (ft)
            210.61
                        120.23
   1
    2
            230.57
                        118.95
    3
            250.53
                       120.08
    4
            270.22
                       123.61
                       129.47
    5
            289.34
    6
            307.62
                        137.59
    7
            324.79
                        147.84
                       160.09
    8
            340.60
   9
            354.83
                       174.14
            367.27
   10
                        189.81
            373.53
                       200.00
   11
Circle Center At X = 231.17; Y = 285.08; and Radius = 166.13
      Factor of Safety
            1.978 ***
Failure Surface Specified By 12 Coordinate Points
           X-Surf
  Point
                       Y-Surf
             (ft)
                         (ft)
  No.
   1
            190.91
                        113.72
   2
            210.83
                       111.98
    3
            230.83
                       112.38
            250.67
    4
                       114.92
   5
            270.12
                        119.56
    6
            288.96
                        126.27
                       134.95
   7
            306.98
   8
            323.97
                       145.51
   9
            339.72
                       157.82
  10
            354.07
                       171.76
  11
            366.84
                       187.15
  12
            375.36
                        200.00
                    217.19; Y = 297.85; and Radius = 185.99
Circle Center At X =
     Factor of Safety
            1.980 ***
Failure Surface Specified By 9 Coordinate Points
  Point
          X-Surf
                      Y-Surf
  No.
             (ft)
                         (ft)
   1
            227.27
                       127,60
   2
            247.21
                       129.14
   3
            266.81
                       133.14
   4
            285.76
                        139.53
   5
            303.78
                        148.21
   6
            320.58
                        159.06
            335.91
                       171.90
   8
            349.54
                       186.54
            359.27
   9
                        200.00
Circle Center At X = 224.80; Y = 289.02; and Radius = 161.44
      Factor of Safety
           1.984 ***
Failure Surface Specified By 11 Coordinate Points
            X-Surf
 Point
                       Y-Surf
  No.
             (ft)
                        (ft)
   1
            198.48
                        116.23
   2
            218.42
                       114.64
   3
            238.39
                       115.73
   4
            258.04
                       119.48
   5
            277.01
                       125.82
                       134.64
145.77
   6
            294.96
            311.57
```

326.55

Run No. 13

*** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) ************** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ****************** Analysis Run Date: Time of Run: Run By: KPC Input Data Filename: N:\Projects\0100-999\803S\Slopes\t5ps1a.in
Output Filename: N:\Projects\0100-999\803S\Slopes\t5ps1a.OUT
Unit System: English Unit System: English Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1a.PLT PROBLEM DESCRIPTION: TT 60258, X-Sect 5-5'; Pseudostatic; Natural slope BOUNDARY COORDINATES 10 Top Boundaries 19 Total Boundaries Y-Left X-Right Y-Right Soil Type Boundary X-Left (ft) 30.00 70 00 (ft) (ft) (ft) 70.00 30.00 70.00 70.00 113.00 88.00 88.00 219.00 123.00 123.00 300.00 168.00 168.00 350.00 200.00 (ft) Below Bnd No. 0.00 4 4 30.00 2 3 113.00 3 219.00 4 3 300.00 5 1 350.00 200.00 370.00 200.00 6 200.00 3 7 370.00 500.00 200.00 200.00 600.00 220.00 638.00 210.00 800.00 220.00 210.00 210.00 500.00 2 8 600.00 638.00 9 10 2 200.00 800.00 206.00 500.00 3 11
 168.00
 340.00
 168.00

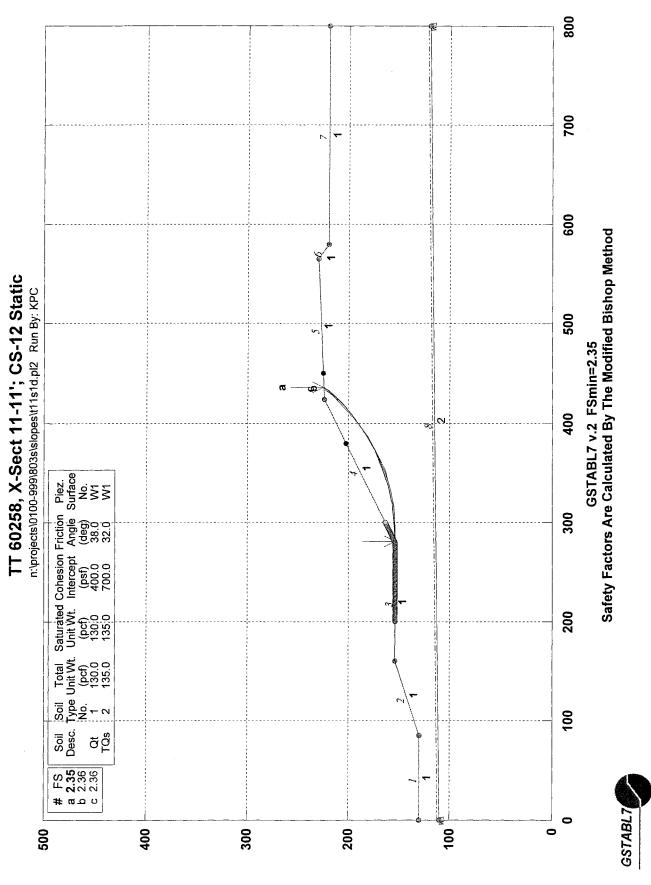
 168.00
 340.10
 180.00

 180.00
 360.00
 180.00

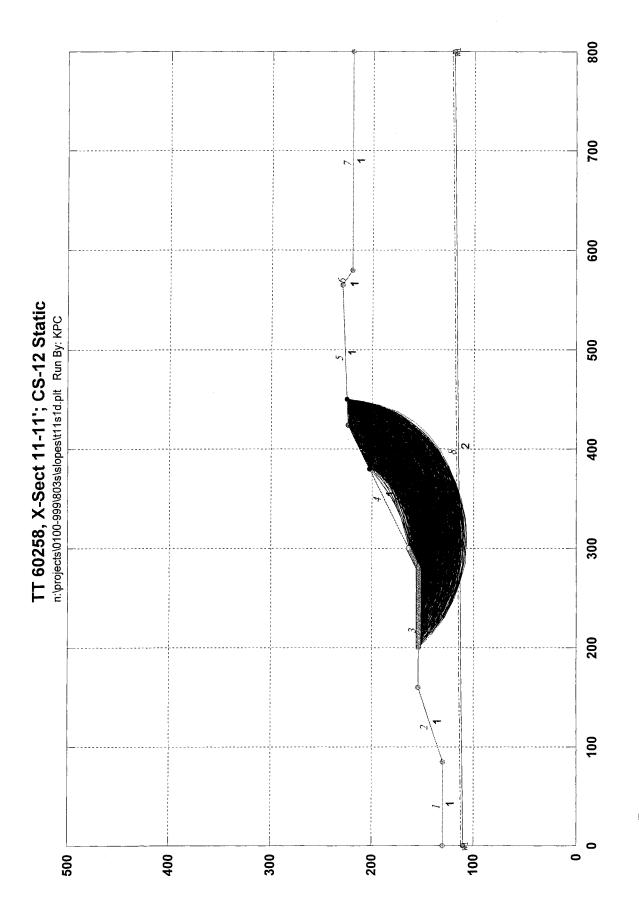
 180.00
 360.10
 190.00
 12 300.00 340.00 3 13 180.00 190.00 190.00 14 340.10 3 15 360.00 190.00 369.90 3 360.10 16 190.00 370.00 17 369.90 200.00 40.00 0.00 50.00 50.00 50.00 50.00 113.00 88.00 19 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 130.0 130.0 300.0 30.0 0.00 0.0 0 0.0 2 130.0 130.0 400.0 38.0 0.00 0.0 1 3 135.0 135.0 700.0 32.0 0.00 0.0 0 0 4 130.0 130.0 400.0 33.0 0.00 0.0 0 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.50 X-Water Y-Water Point No. (ft) (ft) 510.00 202.00 800.00 208.00 1

Specified Peak Ground Acceleration Coefficient (A) = 0.300(g)Specified Horizontal Earthquake Coefficient (kh) = 0.150(g)

```
Specified Vertical Earthquake Coefficient (kv) =
                                                        0.000(q)
   Specified Seismic Pore-Pressure Factor = 0.000
   A Critical Failure Surface Searching Method, Using A Random
   Technique For Generating Circular Surfaces, Has Been Specified.
   1000 Trial Surfaces Have Been Generated.
     10 Surface(s) Initiate(s) From Each Of
                                               100 Points Equally Spaced
   Along The Ground Surface Between X = 100.00(ft)
and X = 250.00(ft)
   Each Surface Terminates Between
                                      X = 280.00(ft)
                                and
                                     X = 600.00(ft)
   Unless Further Limitations Were Imposed, The Minimum Elevation
   At Which A Surface Extends Is Y =
                                            0.00(ft)
   20.00(ft) Line Segments Define Each Trial Failure Surface.
   Restrictions Have Been Imposed Upon The Angle Of Initiation.
   The Angle Has Been Restricted Between The Angles Of -30.0
   And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
            FS Max =
                        6.279 FS Min = 1.478
                                                   FS Ave =
            Standard Deviation =
                                    0.372 Coefficient of Variation =
                                                                           18.96 %
         Failure Surface Specified By 10 Coordinate Points
           Point
                      X-Surf
                                   Y-Surf
                        (ft)
                                    (ft)
            No.
                       221.21
             1
                                   124.23
             2
                      241.21
                                   124.19
             3
                      261.06
                                   126.69
             4
                      280.42
                                   131.69
             5
                      298.99
                                   139.11
             6
                      316.47
                                   148.83
             7
                      332.57
                                   160.69
             8
                      347.04
                                   174.50
             9
                      359.63
                                   190.04
            10
                      365.79
                                   200.00
         Circle Center At X =
                               231.73 ; Y =
                                                279.99 ; and Radius =
                                                                         156.11
                Factor of Safety
                      1.478
              Individual data on the
                                         14 slices
                        Water Water
                                         Tie
                                                  Tie
                                                          Earthquake
                        Force Force
                                         Force
                                                 Force
                                                             Force
                                                                    Surcharge
Slice Width
               Weight
                         qoT
                                Bot
                                         Norm
                                                  Tan
                                                                   Ver
                                                          Hor
                                                                         Load
No.
        (ft)
                (lbs)
                         (lbs)
                                (lbs)
                                         (lbs)
                                                 (lbs)
                                                         (lbs)
                                                                  (lbs)
                                                                          (lbs)
                           0.0
                                   0.0
                                             0.
                                                      0. 2258.4
        20.0
               15055.8
                                                                               0.0
 1
                                                                      0.0
                           0.0
                                                      0.
 2
        19.8
               41293.0
                                    0.0
                                              0.
                                                          6193.9
                                                                      0.0
                                                                               0.0
                                                      0. 8844.8
 3
        19.4
               58965.6
                           0.0
                                    0.0
                                              0.
                                                                      0.0
                                                                               0.0
               67404.2
                                             0.
       18.6
                           0.0
                                   0.0
                                                      0. 10110.6
  4
                                                                      0.0
                                                                               0.0
                                             0.
                3853.1
                           0.0
                                    0.0
        1.0
                                                      0.
                                                          578.0
                                                                      0.0
                                                                               0.0
  6
               64104.5
                           0.0
                                   0.0
                                             0.
                                                          9615.7
        16.5
                                                      0.
                                                                      0.0
                                                                               0.0
 7
        16.1
               61640.6
                           0.0
                                   0.0
                                             0.
                                                      0.
                                                          9246.1
                                                                      0.0
                                                                               0.0
         7.4
 8
               26192.2
                           0.0
                                   0.0
                                              0.
                                                      0.
                                                          3928.8
                                                                      0.0
                                                                               0.0
        0.1
                 338.6
                                                      0.
 q
                           0.0
                                   0.0
                                             0.
                                                             50.8
                                                                      0.0
                                                                               0.0
               22588.5
                                                      0. 3388.3
 10
        6.9
                           0.0
                                   0.0
                                             0.
                                                                      0.0
                                                                               0.0
 11
        3.0
                8798.7
                           0.0
                                   0.0
                                              0.
                                                      0. 1319.8
                                                                      0.0
                                                                               0.0
                4080.5
        1.5
                           0.0
                                   0.0
                                              0.
                                                      0.
                                                           612.1
 12
                                                                      0.0
                                                                               0.0
13
        8.1
               15845.6
                           0.0
                                   0.0
                                              0.
                                                      0.
                                                          2376.8
                                                                      0.0
                                                                               0.0
14
         6.2
                3988.3
                           0.0
                                   0.0
                                              0.
                                                      0.
                                                           598.2
                                                                      0.0
                                                                               0.0
        Failure Surface Specified By 13 Coordinate Points
                      X-Surf
           Point
                                  Y-Surf
            No.
                       (ft)
                                   (ft)
                      187.88
             1
                                  112.72
             2
                      207.78
                                  110.75
             3
                      227.78
                                  110.82
```


247.67

267.24


5

112.93

```
6
             286.28
                        123.20
             304.59
    7
                        131.23
             321.99
                        141.10
    8
    9
             338.28
                        152.70
             353.30
                        165.90
   10
   11
             366.90
                        180.57
   12
             378.92
                        196.55
            381.00
                        200.00
   13
Circle Center At X =
                     217.09; Y = 305.74; and Radius = 195.22
      Factor of Safety
            1.480 ***
Failure Surface Specified By 12 Coordinate Points
  Point
            X-Surf
                        Y-Surf
  No.
             (ft)
                         (ft)
    1
            187.88
                        112.72
            207.88
                        112.95
    2
            227.77
    3
                        114.98
    4
            247.41
                        118.80
    5
            266.61
                        124.39
            285.23
                        131.68
    6
                        140.64
    7
            303.11
    8
            320.11
                        151.17
    9
            336.09
                        163.20
  10
            350.91
                        176.63
  11
            364.46
                        191.34
            371.09
                        200.00
  12
Circle Center At X = 195.61; Y = 332.44; and Radius = 219.85
     Factor of Safety
            1.480 ***
Failure Surface Specified By 12 Coordinate Points
            X-Surf
                       Y-Surf
  Point
  No.
             (ft)
                         (ft)
            190.91
                        113.72
   1
   2
            210.83
                        111.98
    3
            230.83
                        112.38
            250.67
    4
                        114.92
    5
            270.12
                        119.56
    6
            288.96
                        126.27
                        134.95
   7
            306.98
            323.97
                        145.51
    8
   9
            339.72
                        157.82
  10
            354.07
                        171.76
  11
            366.84
                        187.15
            375.36
                        200.00
  12
Circle Center At X = 217.19; Y =
                                   297.85 ; and Radius = 185.99
      Factor of Safety
           1.480 ***
Failure Surface Specified By 14 Coordinate Points
 Point
            X-Surf
                        Y-Surf
                         (ft)
  No.
             (ft)
   1
            171.21
                        107.22
                        105.79
   2
            191.16
   3
            211.16
                        105.92
    4
            231.09
                        107.63
    5
            250.82
                        110.89
    6
            270.23
                        115.69
    7
            289.21
                        122.00
                        129.78
   8
            307.64
   9
            325.39
                        138.99
  10
            342.37
                        149.55
  11
            358.47
                        161.42
            373.59
                        174.52
  12
            387.63
                        188.76
  13
  14
            397.10
                        200.00
                     199.51; Y = 359.71; and Radius = 254.07
Circle Center At X =
     Factor of Safety
            1.482 ***
```


Run No. 14

*** GSTABL7 ***

```
** GSTABL7 by Garry H. Gregory, P.E. **
    ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
               (All Rights Reserved-Unauthorized Use Prohibited)
 ******************
                   SLOPE STABILITY ANALYSIS SYSTEM
       Modified Bishop, Simplified Janbu, or GLE Method of Slices.
       (Includes Spencer & Morgenstern-Price Type Analysis)
       Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
       Nonlinear Undrained Shear Strength, Curved Phi Envelope,
       Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
       Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
 *******************
Analysis Run Date:
Time of Run:
                        KPC
Run By:
Input Data Filename:
                        N:\Projects\0100-999\803S\Slopes\t11s1d.in
Output Filename:
                        N:\Projects\0100-999\803S\Slopes\t11s1d.OUT
                        English
Unit System:
Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1d.PLT
PROBLEM DESCRIPTION: TT 60258, X-Sect 11-11'; CS-12
                     Static
BOUNDARY COORDINATES
    7 Top Boundaries
    8 Total Boundaries
           X-Left
                       Y-Left X-Right Y-Right
                                                     Soil Type
Boundary
                    (ft) (ft)
130.00 85.00
130.00 160.00
154.00 280.00
154.00 424.00
            (ft)
                                           (ft)
                                                    Below Bnd
   No.
    1
              0.00
                                           130.00
                                                     1
    2
             85.00
                                           154.00
                                                         1
                                          154.00
           160.00
    3
                                                        1
    4
           280.00
                                          224.00
                                                        1
                                          230.00
            424.00
                    224.00 565.00
            565.00
                      230.00 580.00
                                          220.00
                                                       1
    6
                       220.00
                                800.00
                                          220.00
120.00
    7
            580.00
                                                        1
    8
              0.00
                       110.00
                                800.00
Default Y-Origin = 0.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
 2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
 No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
                              38.0
32.0
             130.0
                     400.0
700.0
                                        0.00
      130.0
  1
                                                   0.0
                                                           1
  2
      135.0
              135.0
                                      0.00
                                                   0.0
                                                           1
1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 2 Coordinate Points
Pore Pressure Inclination Factor = 0.50
  Point X-Water Y-Water
   No.
              (ft)
                         (ft)
                     112.00
122.00
              0.00
    1
            800.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
  10 Surface(s) Initiate(s) From Each Of
                                        100 Points Equally Spaced
Along The Ground Surface Between X = 200.00(ft)
                           and X = 300.00(ft)
Each Surface Terminates Between X = 380.00(ft)
                          and X = 450.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
19.00(ft) Line Segments Define Each Trial Failure Surface.
Restrictions Have Been Imposed Upon The Angle Of Initiation.
The Angle Has Been Restricted Between The Angles Of -45.0
And 15.0 deg.
Following Are Displayed The Ten Most Critical Of The Trial
```

```
N:\Projects\0100-999\803S\Slopes\t11s1d.OUT Page 2
        Failure Surfaces Evaluated. They Are
        Ordered - Most Critical First.
        * * Safety Factors Are Calculated By The Modified Bishop Method * *
        Total Number of Trial Surfaces Evaluated = 1000
        Statistical Data On All Valid FS Values:
           FS Max = 4.804 FS Min = 2.351 FS Ave =
                                                       3.128
           Standard Deviation = 0.467 Coefficient of Variation = 14.92 %
        Failure Surface Specified By 11 Coordinate Points
          Paint
                   X-Surf
                              Y-Surf
           No.
                    (ft)
                               (ft)
           1
                    280.81
                              154.39
            2
                    299.81
                              154.71
            3
                    318.68
                              156.88
            4
                    337.25
                               160.89
            5
                   355.35
                              166.68
            6
                   372.79
                              174.22
            7
                   389.41
                              183.43
            8
                   405.05
                              194.21
            9
                   419.57
                               206.47
           10
                   432.82
                              220.09
                   436.36
                              224.53
           11
        Circle Center At X = 287.06; Y = 348.62; and Radius = 194.33
             Factor of Safety
                   2.351 ***
            Individual data on the
                                    11 slices
                     Water Water
                                    Tie
                                           Tie
                                                   Earthquake
                     Force Force
                                           Force
                                                   Force Surcharge
                                    Force
                                                   Hor Ver Load
Slice Width
            Weight
                      Top Bot
                                    Norm
                                           Tan
                                          (lbs)
                                                          (lbs)
                      (lbs) (lbs)
                                                   (lbs)
      (ft)
             (lbs)
                                    (lbs)
                                                                (lbs)
                                     0.
                      0.0
                                            0.
             11011.2
                             0.0
                                                   0.0
                                                            0.0
       19.0
       18.9
             30474.7
                        0.0
                               0.0
                                        0.
                                                      0.0
                                                             0.0
                                                                      0.0
                                       0.
                                               0.
            44508.6
                       0.0
                               0.0
                                                      0.0
       18.6
                                                             0.0
                                                                     0.0
      18.1
             52792.0
                       0.0
                               0.0
                                       0.
                                               0.
                                                     0.0
                                                             0.0
                                                                     0.0
      17.4
            55350.2
                      0.0
                              0.0
                                       0.
                                               0.
                                                    0.0
                                                             0.0
                                                                     0.0
                     0.0
0.0
0.0
                                              0.
0.
0.
                                                    0.0
                              0.0
                                       0.
            52549.2
                                                             0.0
                                                                     0.0
      16.6
       15.6
             45078.1
                               0.0
                                        0.
                                                      0.0
                                                             0.0
                                                                      0.0
       14.5
             33917.1
                               0.0
                                        0.
                                                      0.0
                                                             0.0
                                                                     0.0
                              0.0
                                               0.
                                                      0.0
                       0.0
                                        0.
                                                            0.0
                                                                     0.0
       4.4
             8166.2
                      0.0
                            0.0
                                        0.
            9886.5
                                               0.
                                                      0.0
                                                            0.0
                                                                     0.0
       8.8
        3.5
             985.5
                                        0.
                                               0.
                                                      0.0
                                                            0.0
                                                                     0.0
        Failure Surface Specified By 11 Coordinate Points
         Point
                   X-Surf Y-Surf
                    (ft)
          No.
                               (ft)
           1
                   277.78
                              154.00
           2
                   296.78
                              153.70
           3
                   315.70
                              155.37
           4
                   334.36
                              158.98
           5
                   352.54
                              164.50
                   370.05
                              171.86
           6
           7
                   386.71
                              181.00
           8
                   402.34
                              191.80
           9
                   416.77
                              204.16
           10
                   429.85
                              217.94
           11
                   434.87
                              224.46
        Circle Center At X = 290.13; Y = 337.43; and Radius = 183.85
             Factor of Safety
                   2.356 ***
        Failure Surface Specified By 11 Coordinate Points
         Point
                   X-Surf Y-Surf
          No.
                    (ft)
                               (f+)
                   274.75
                              154.00
           2
                   293.74
                              153.55
           3
                   312.68
                              155.05
```

No.

7 2

3

4 5

6

7

8

9

10

11

4

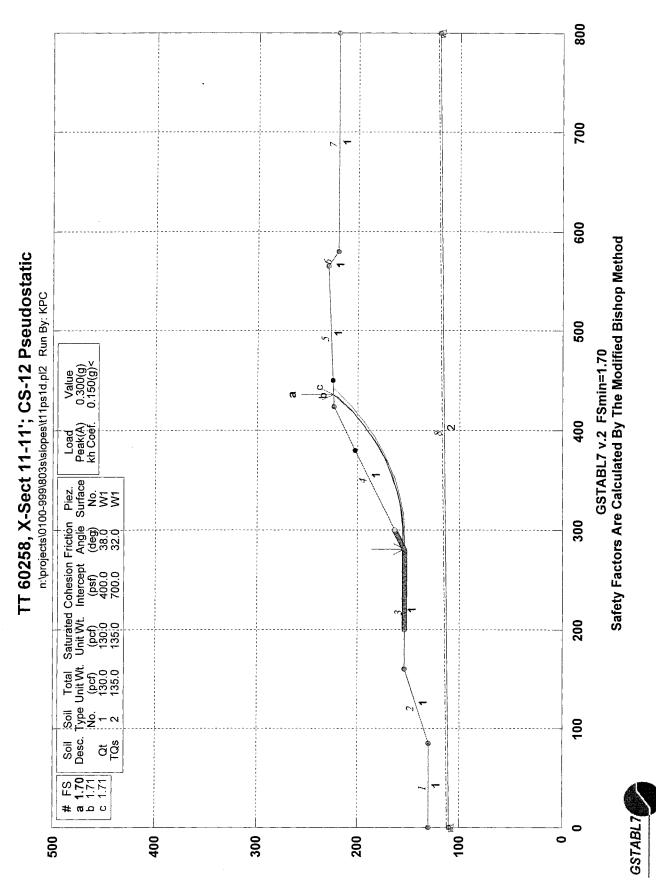
5

331.37

349.60

367.19

383.95


158.49

163.83

171.02

```
N:\Projects\0100-999\803S\Slopes\t11s1d.OUT Page 3
```

```
8
             399.70
                         190.61
    9
             414.27
                         202.80
   10
             427.51
                         216.42
   11
             433.83
                         224.42
Circle Center At X =
                      288.62 ; Y = 338.19 ; and Radius = 184.72
      Factor of Safety
             2.364
Failure Surface Specified By 11 Coordinate Points
  Point
            X-Surf
                         Y-Surf
   No.
              (ft)
                          (ft)
    1
             283.84
                         155.87
    2
             302.84
                         156.05
    3
             321.73
                         158.03
    4
             340.36
                         161.79
    5
             358.54
                         167.29
    6
             376.13
                         174.49
    7
             392.96
                         183.31
    8
             408.87
                         193.69
    g
             423.74
                         205.52
   10
             437.41
                         218.71
   11
             442.63
                         224.79
Circle Center At X = 291.38; Y = 356.51; and Radius = 200.79
      Factor of Safety
             2.374
Failure Surface Specified By 11 Coordinate Points
            X-Surf
                        Y-Surf
  Point
   No.
              (ft)
                          (ft)
   1
             282.83
                         155.37
    2
             301.81
                         154.58
             320.76
    3
                         156.04
             339.39
    4
                         159.72
    5
             357.47
                        165.59
    6
             374.72
                         173.55
    7
             390.91
                         183.49
    8
             405.81
                         195.28
    9
             419.21
                         208.75
             430.93
                         223.70
   10
   11
             431.30
                         224.31
                      299.02 ; Y =
Circle Center At X =
                                      314.96; and Radius = 160.40
      Factor of Safety
            2.375
Failure Surface Specified By 11 Coordinate Points
            X-Surf
  Point
                         Y-Surf
  No.
              (ft)
                          (ft)
   1
             284.85
                         156.36
    2
             303.83
                         155.61
    3
            322.78
                         157.03
    4
            341.44
                         160.61
    5
             359.57
                         166.29
    6
             376.93
                         174.01
    7
             393.30
                         183.66
    8
            408.46
                         195.12
   9
            422.20
                         208.23
   10
             434.37
                         222.83
  11
            435.45
                         224.49
                      300.89 ; Y =
Circle Center At X =
                                      321.67; and Radius = 166.09
      Factor of Safety
           2.377 ***
Failure Surface Specified By 11 Coordinate Points
            X-Surf
 Point
                        Y-Surf
  Ñο.
             (ft)
                          (ft)
   1
            282.83
                         155.37
   2
                         154.27
            301.80
   3
            320.76
                         155.38
   4
            339.47
                         158.71
   5
            357.66
                         164.20
   6
            375.08
                         171.78
```


Run No. 15

*** GSTABL7 ***

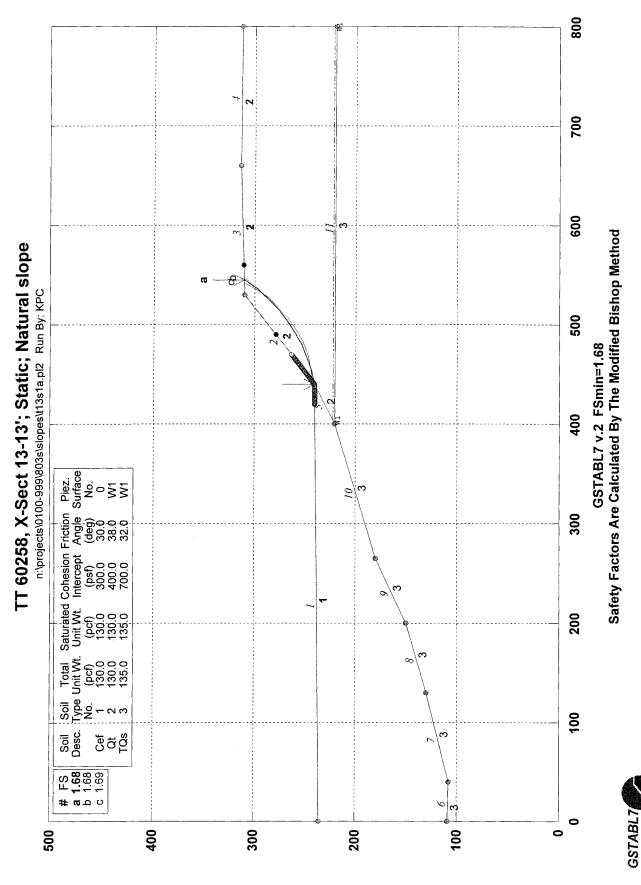
```
** GSTABL7 by Garry H. Gregory, P.E. **
    ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
              (All Rights Reserved-Unauthorized Use Prohibited)
 *****************
                    SLOPE STABILITY ANALYSIS SYSTEM
       Modified Bishop, Simplified Janbu, or GLE Method of Slices.
        (Includes Spencer & Morgenstern-Price Type Analysis)
       Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
       Nonlinear Undrained Shear Strength, Curved Phi Envelope,
       Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
       Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
 *******************
 Analysis Run Date:
 Time of Run:
 Run By:
                         KPC
 Input Data Filename:
                         N:\Projects\0100-999\803S\Slopes\t11psld.in
                        N:\Projects\0100-999\803S\Slopes\t11psld.OUT
 Output Filename:
Unit System:
                        English
 Plotted Output Filename: N:\Projects\0100-999\803S\Slopesps1d.PLT
PROBLEM DESCRIPTION: TT 60258, X-Sect 11-11'; CS-12
                     Pseudostatic
BOUNDARY COORDINATES
    7 Top Boundaries
    8 Total Boundaries
                     ..-kight (ft)
130.00 85.00
130.00 160.00
154.00 280 00
                       Y-Left X-Right Y-Right Soil Type
Boundary
           X-Left
            (ft)
   No.
                                           (ft)
                                                     Below Bnd
              0.00
                                           130.00
    1
                                                         1
                                          154.00
             85.00
                                                         1
    2
           160.00
                                280.00
                                          154.00
                                                        1
    3
            280.00
                    154.00
                                424.00
                                          224.00
                                                        1
                                565.00 230.00
580.00 220.00
800.00 220.00
                    224.00
            424.00
                                                        1
    5
                       230.00
220.00
    6
            565.00
                                                         1
                                800.00
    7
            580.00
                                                         1
                      110.00
                                800.00 120.00
                                                        2
    8
              0.00
Default Y-Origin = 0.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
 2 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
 No. (pcf) (pcf) (psf) (deg) Param. (psf)
                                                           No.
                              38.0
32.0
                     400.0
700.0
                                        0.00
  1
      130.0
              130.0
                                 38.0
                                                   0.0
                                                            1
              135.0
                                        0.00
                                                   0.0
                                                            1
      135.0
1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 2 Coordinate Points
Pore Pressure Inclination Factor = 0.50
  Point
        X-Water Y-Water
   No.
              (ft)
                         (ft)
                     (IT)
112.00
              0.00
    1
            800.00
                       122.00
Specified Peak Ground Acceleration Coefficient (A) = 0.300(g)
Specified Horizontal Earthquake Coefficient (kh) = 0.150(q)
Specified Vertical Earthquake Coefficient (kv) =
                                              0.000(g)
Specified Seismic Pore-Pressure Factor = 0.000
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
  10 Surface(s) Initiate(s) From Each Of
                                        100 Points Equally Spaced
Along The Ground Surface Between X = 200.00(ft)
                          and X = 300.00(ft)
Each Surface Terminates Between X = 380.00(ft)
                          and X = 450.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
```

19.00(ft) Line Segments Define Each Trial Failure Surface.

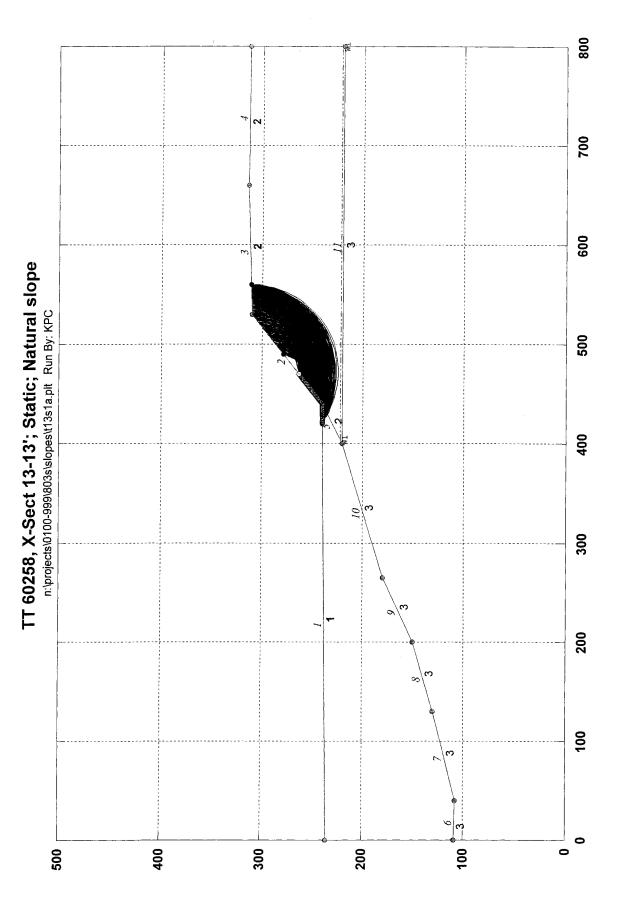
```
The Angle Has Been Restricted Between The Angles Of -45.0
   And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
            FS Max = 3.149 FS Min = 1.703
                                                  FS Ave =
                                                             2.247
                                   0.314 Coefficient of Variation =
                                                                         13.97 %
            Standard Deviation =
         Failure Surface Specified By 11 Coordinate Points
                                Y-Surf
           Point
                     X-Surf
            No.
                       (ft)
                                   (ft)
                     280.81
                                 154.39
             1
             2
                     299.81
                                 154.71
             3
                     318.68
                                 156.88
             4
                     337.25
                                 160.89
             5
                     355.35
                                 166.68
             6
                     372.79
                                 174.22
             7
                     389.41
                                 183.43
             8
                     405.05
                                 194.21
             9
                     419.57
                                 206.47
                     432.82
                                  220.09
            10
            11
                     436.36
                                 224.53
                              287.06 ; Y = 348.62 ; and Radius = 194.33
         Circle Center At X =
               Factor of Safety
                     1.703
              Individual data on the 11 slices
                        Water Water
                                        Tie
                                                 Tie
                                                         Earthquake
                        Force Force
                                                          Force Surcharge
                                       Force
                                                Force
                                                                Ver
              Weight
                        Top
                               Bot
                                       Norm
                                                Tan
                                                         Hor
Slice Width
                                                                        (lbs)
                                                        (lbs)
                                                                (lbs)
       (ft)
               (lbs)
                        (lbs)
                              (lbs)
                                        (lbs)
                                                (lbs)
No.
                                                   0. 1651.7
0. 4571.2
                                           0.
                                                                  0.0
                                                                             0.0
                          0.0
                                0.0
       19.0 11011.2
 1
                                  0.0
                                            0.
                                                                    0.0
                                                                             0.0
       18.9
               30474.7
                           0.0
  2
                                                    0. 6676.3
                                                                            0.0
                                                                   0.0
  3
       18.6
               44508.6
                           0.0
                                  0.0
                                            0.
                                  0.0
                                            0.
                                                    0. 7918.8
                                                                   0.0
               52792.0
                          0.0
        18.1
                                                    0. 8302.5
                                                                   0.0
                                                                             0.0
       17.4
               55350.2
                          0.0
                                  0.0
                                            0.
  5
                                            0.
                                                    0. 7882.4
                                                                    0.0
                                                                             0.0
       16.6
               52549.2
                          0.0
                                  0.0
  6
                                                    0. 6761.7
0. 5087.6
                          0.0
                                  0.0
                                            0.
                                                                    0.0
                                                                             0.0
  7
       15.6
               45078.1
                                  0.0
                                            0.
                                                                    0.0
                                                                             0.0
       14.5
               33917.1
                          0.0
  8
                                                    0. 1224.9
                                                                             0.0
                                                                   0.0
         4.4
               8166.2
                          0.0
                                  0.0
                                            0.
  9
                                  0.0
                                             0.
                                                    0. 1483.0
                                                                    0.0
                          0.0
                9886.5
 10
         8.8
         3.5
                985.5
                          0.0
                                  0.0
                                             0.
                                                    0.
                                                         147.8
                                                                    0.0
                                                                             0.0
 11
         Failure Surface Specified By 11 Coordinate Points
                   X-Surf Y-Surf
           Point
                      (ft)
                                   (ft)
            No.
                     277.78
                                 154.00
             1
             2
                     296.78
                                 153.70
             3
                     315.70
                                 155.37
                                 158.98
             4
                     334.36
             5
                     352.54
                                  164.50
                     370.05
             6
                                 171.86
             7
                     386.71
                                 181.00
                      402.34
                                  191.80
             8
             9
                      416.77
                                  204.16
            10
                      429.85
                                  217.94
            11
                     434.87
                                  224.46
                              290.13 ; Y = 337.43 ; and Radius = 183.85
         Circle Center At X =
               Factor of Safety
                      1.709 ***
         Failure Surface Specified By 11 Coordinate Points
                     X-Surf
                                 Y-Surf
           Point
                                   (ft)
            No.
                      (ft)
                                  155.87
                      283.84
            1
                      302.84
                                 156.05
             3
                     321.73
                                 158.03
```

Restrictions Have Been Imposed Upon The Angle Of Initiation.

```
N:\Projects\0100-999\803S\Slopes\t11ps1d.OUT Page 3
    4
             340.36
                        161.79
    5
             358.54
                        167.29
             376.13
                        174.49
    6
    7
             392.96
                       183.31
            408.87
                       193.69
    8
    9
             423.74
                        205.52
   10
             437.41
                        218.71
   11
            442.63
                        224.79
Circle Center At X = 291.38; Y = 356.51; and Radius = 200.79
      Factor of Safety
            1.710 ***
Failure Surface Specified By 12 Coordinate Points
  Point
          X-Surf
                      Y-Surf
   No.
                         (ft)
             (ft)
            276.77
   1
                       154.00
    2
            295.75
                       153.24
    3
            314.72
                       154.33
            333.50
    4
                        157.25
    5
            351.90
                        161.97
                       168.46
    6
            369.76
    7
            386.90
                       176.65
    8
            403.17
                       186.47
            418.41
    9
                        197.81
   10
            432.48
                        210.58
   11
            445.24
                        224.66
   12
            445.43
                        224.91
Circle Center At X = 294.09; Y = 348.85; and Radius = 195.62
      Factor of Safety
            1.714 ***
Failure Surface Specified By 11 Coordinate Points
           X-Surf
                     Y-Surf
  Point
   No.
             (ft)
                         (ft)
            274.75
                        154.00
   1
   2
            293.74
                        153.55
   3
            312.68
                        155.05
                       158.49
            331.37
    4
    5
            349.60
                       163.83
    6
            367.19
                       171.02
   7
            383.95
                       179.98
   8
            399.70
                        190.61
   9
            414.27
                        202.80
   10
            427.51
                        216.42
   11
            433.83
                        224.42
Circle Center At X = 288.62; Y = 338.19; and Radius = 184.72
     Factor of Safety
           1.716 ***
Failure Surface Specified By 12 Coordinate Points
          X-Surf
                     Y-Surf
 Point.
  No.
             (ft)
                         (ft)
            274.75
                       154.00
   1
   2
            293.73
                        153.12
   3
            312.71
                        154.02
            331.52
   4
                       156.71
   5
            349.99
                       161.14
   6
            367.97
                       167.30
   7
            385.28
                        175.11
   8
            401.79
                        184.52
   9
            417.35
                        195.43
  10
            431.81
                       207.76
  11
            445.04
                       221.39
  12
            447.96
                        225.02
Circle Center At X =
                    293.70 ; Y = 354.50 ; and Radius = 201.40
      Factor of Safety
           1.720 ***
Failure Surface Specified By 11 Coordinate Points
```


Point

No.


X-Surf Y-Surf

(ft)

(ft)

Run No. 16

*** GSTABL7 ***

```
** GSTABL7 by Garry H. Gregory, P.E. **
    ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 **
              (All Rights Reserved-Unauthorized Use Prohibited)
 **************
                   SLOPE STABILITY ANALYSIS SYSTEM
       Modified Bishop, Simplified Janbu, or GLE Method of Slices.
       (Includes Spencer & Morgenstern-Price Type Analysis)
       Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope,
       Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
       Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces.
Analysis Run Date:
Time of Run:
Run By:
Input Data Filename:
                         N:\Projects\0100-999\803S\Slopes\t13s1a.in
                         N:\Projects\0100-999\803S\Slopes\t13s1a.OUT
Output Filename:
Unit System:
                         English
Plotted Output Filename: N:\Projects\0100-999\803S\Slopess1a.PLT
PROBLEM DESCRIPTION: TT 60258, X-Sect 13-13'; Static;
                     Natural slope
BOUNDARY COORDINATES
    4 Top Boundaries
   11 Total Boundaries
Boundary X-Left
                       Y-Left X-Right
                                           Y-Right
                                                     Soil Type
            (ft)
   No.
                        (ft)
                                 (ft)
                                            (ft)
                                                     Below Bnd
             0.00
                       235.00
                                 440.00
                                           240.00
    1
                                                         1
            440.00
                                530.00
    2
                       240.00
                                           310.00
           530.00
                              660.00
                                                         2
    3
                       310.00
                                           314.00
                              800.00
                                           313.00
           660.00
                       314.00
                                                         2
    4
           400.00
                       220.00
                                            240.00
                                                         2
    5
    6
             0.00
                       109.00
                                  40.00
                                           108.00
                                                         3
                              130.00
                                           130.00
                                                         3
    7
             40.00
                      108.00
           130.00
                     130.00 200.00
                                           150.00
                                           180.00
                                265.00
                                                         3
    9
            200.00
                      150.00
                    180.00
            265.00
                                400.00
                                           220.00
                                                         3
   10
   11
            400.00
                       220.00
                                 800.00
                                           220.00
Default Y-Origin = 0.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
 3 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
                                       Param. (psf) No.
 No. (pcf) (pcf) (psf) (deg)
      130.0
              130.0
                       300.0
                                30.0
                                        0.00
                                                   0.0
                                                            0
                              38.0
                       400.0
            130.0
                                        0.00
      130.0
                                                   0.0
  2
                                                            1
      135.0
              135.0
                        700.0
                                 32.0
                                         0.00
                                                   0.0
1 PIEZOMETRIC SURFACE(S) SPECIFIED
Unit Weight of Water = 62.40 (pcf)
Piezometric Surface No. 1 Specified by 2 Coordinate Points
Pore Pressure Inclination Factor = 0.50
  Point
         X-Water Y-Water
              (ft)
   No.
                       222.00
            404.00
    1
            800.00
                       222.00
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
                                         100 Points Equally Spaced
  10 Surface(s) Initiate(s) From Each Of
Along The Ground Surface Between X = 420.00(ft)
                           and X = 470.00(ft)
Each Surface Terminates Between X = 490.00(ft)
                          and X = 560.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
14.00(ft) Line Segments Define Each Trial Failure Surface.
```

```
Restrictions Have Been Imposed Upon The Angle Of Initiation.
   The Angle Has Been Restricted Between The Angles Of -45.0
   And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
         Failure Surfaces Evaluated. They Are
         Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
         Total Number of Trial Surfaces Evaluated = 1000
         Statistical Data On All Valid FS Values:
            FS Max = 3.240 FS Min = 1.677
                                                   FS Ave =
                                                              2.137
                                    0.244 Coefficient of Variation =
            Standard Deviation =
                                                                          11.40 %
         Failure Surface Specified By 11 Coordinate Points
           Point
                      X-Surf
                                  Y-Surf
            No.
                       (ft)
                                   (ft)
                      440.20
                                  240.16
             1
             2
                      453.82
                                  243.40
             3
                      467.11
                                  247.81
                      479.97
                                  253.34
                      492.31
             5
                                  259.96
                      504.03
                                  267.61
             6
             7
                      515.06
                                  276.24
                      525.30
             8
                                  285.78
             9
                      534.68
                                  296.17
            10
                      543.14
                                  307.33
                      545.12
            11
                                  310.47
                                409.27; Y = 400.02; and Radius = 162.83
         Circle Center At X =
                Factor of Safety
                      1.677
              Individual data on the
                                        11 slices
                        Water Water
                                         Tie
                                                 Tie
                                                          Earthquake
                                                           Force Surcharge
                        Force Force
                                        Force
                                                 Force
              Weight
                                                 Tan
                                                                 Ver
Slice Width
                         Top
                                Bot
                                        Norm
                                                          Hor
                                                                         (lbs)
                               (lbs)
                                        (lbs)
                                                 (lbs)
                                                         (lbs)
                                                                 (lbs)
No.
        (ft)
               (lbs)
                        (lbs)
        13.6
                6500.5
                          0.0
                                  0.0
                                            0.
                                                     0.
                                                            0.0
                                                                    0.0
                                                                              0.0
 1
        13.3
               17808.5
                           0.0
                                   0.0
                                             0.
                                                     0.
                                                             0.0
                                                                     0.0
                                                                              0.0
                                   0.0
                                                     0.
                                                             0.0
                                                                     0.0
               25931.2
                           0.0
                                             0.
                                                                              0.0
 3
       12.9
 4
       12.3
               30854.7
                           0.0
                                   0.0
                                             0.
                                                     0.
                                                            0.0
                                                                     0.0
                                                                              0.0
 5
       11.7
               32710.5
                           0.0
                                   0.0
                                            0.
                                                     Ο.
                                                             0.0
                                                                     0.0
                                                                              0.0
                                   0.0
                                             0.
       11.0
               31768.3
                           0.0
                                                     0.
                                                             0.0
                                                                     0.0
                                                                              0.0
 6
                                             0.
 7
       10.2
               28426.6
                           0.0
                                   0.0
                                                     0.
                                                             0.0
                                                                     0.0
                                                                              0.0
 8
        4.7
               12094.5
                           0.0
                                   0.0
                                             0.
                                                     0.
                                                             0.0
                                                                     0.0
                                                                              0.0
               10038.7
                                   0.0
                                                             0.0
                                                                     0.0
        4.7
                           0.0
                                             Ο.
                                                     0.
                                                                              0.0
 q
                                                             0.0
10
        8.5
               9371.5
                           0.0
                                   0.0
                                             0.
                                                     0.
                                                                     0.0
                                                                              0.0
                                                             0.0
11
         2.0
                 395.4
                           0.0
                                   0.0
                                             0.
                                                     0.
                                                                     0.0
                                                                              0.0
         Failure Surface Specified By 11 Coordinate Points
           Point
                      X-Surf
                                  Y-Surf
                       (ft)
                                   (ft)
            No.
                      440.20
                                  240.16
             1
             2
                      453.84
                                  243.33
             3
                      467.16
                                  247.64
             4
                      480.07
                                  253.06
             5
                      492.48
                                  259.53
             6
                      504.30
                                  267.03
                                  275.50
                      515.45
             8
                      525.86
                                  284.87
             9
                      535.43
                                  295.08
            10
                      544.12
                                  306.06
                      547.08
                                  310.53
            11
         Circle Center At X =
                               409.26; Y = 403.84; and Radius = 166.58
               Factor of Safety
                      1.681 ***
         Failure Surface Specified By 11 Coordinate Points
           Point
                      X-Surf
                                  Y-Surf
           No.
                       (ft)
                                   (ft)
                                  241.73
            1
                      442.22
             2
                      456.07
                                  243.78
```

469.60

```
N:\Projects\0100-999\803S\Slopes\t13s1a.OUT Page 3
252.50
```

```
5
          495.00
                       259.06
 6
          506.55
                       266.97
 7
          517.12
                       276.15
 8
          526.59
                       286.46
 9
          534.83
                       297.77
10
          541.74
                       309.95
11
          541.92
                       310.37
```

Circle Center At X = 431.10; Y = 364.65; and Radius = 123.43 Factor of Safety

*** 1.691 ***

482.63

```
Failure Surface Specified By 10 Coordinate Points
```

```
X-Surf
Point
                      Y-Surf
No.
            (ft)
                         (ft)
                        242.12
           442.73
 1
  2
           456.30
                        245.55
  3
           469.53
                        250.14
  4
           482.30
                        255.87
  5
           494.53
                        262.69
  6
           506.11
                        270.55
  7
           516.97
                        279.38
  8
           527.02
                        289.13
 9
           536.19
                        299.71
10
           543.94
                        310.43
```

Circle Center At X = 410.31; Y = 399.29; and Radius = 160.48 Factor of Safety

*** 1.691 ***

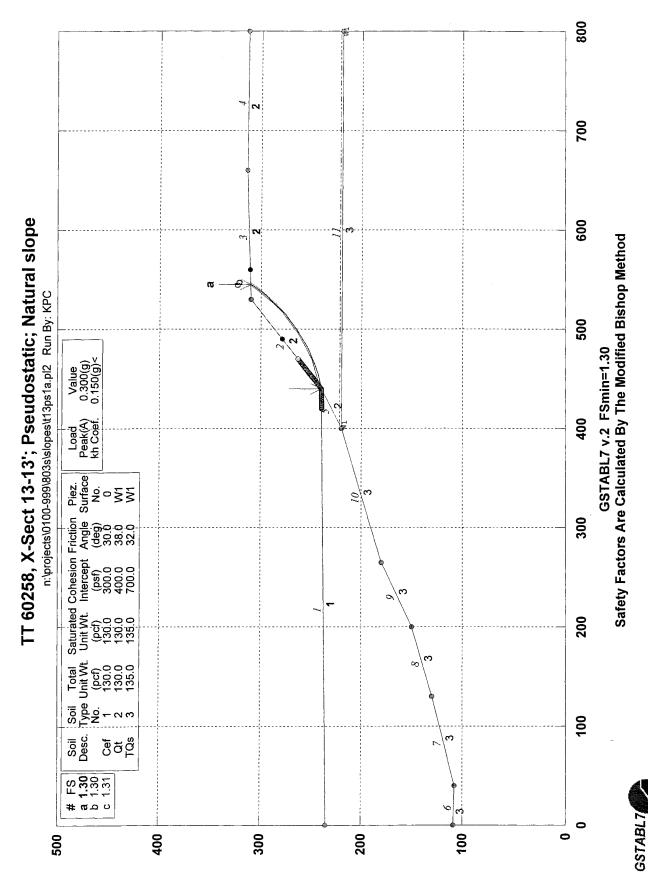
```
Failure Surface Specified By 11 Coordinate Points
```

```
X-Surf
Point
                      Y-Surf
No.
            (ft)
                        (ft)
                       240.94
 1
           441.21
  2
           455.10
                       242.68
  3
           468.68
                       246.09
           481.74
  4
                       251.14
  5
           494.08
                       257.74
  6
           505.53
                       265.80
  7
           515.91
                       275.19
  8
           525.07
                       285.78
  9
           532.87
                       297.41
 10
           539.19
                       309.90
           539.33
                       310.29
1.1
```

Circle Center At X = 433.98; Y = 355.30; and Radius = 114.59 Factor of Safety

*** 1.694 ***

Failure Surface Specified By 10 Coordinate Points


```
Point
          X-Surf
                      Y-Surf
           (ft)
 No.
                        (ft)
 1
                       242.12
           442.73
 2
           456.56
                       244.29
 3
           470.03
                       248.11
  4
           482.94
                       253.52
 5
           495.11
                       260.45
  6
           506.35
                       268.79
 7
           516.52
                       278.41
 8
           525.45
                       289.19
 9
           533.02
                       300.97
           537.50
                       310.23
 10
```

Circle Center At X = 431.83; Y = 357.27; and Radius = 115.66 Factor of Safety

*** 1.695 ***

Failure Surface Specified By 11 Coordinate Points

```
Point
          X-Surf
                       Y-Surf
No.
           (ft)
                        (ft)
 1
           441.72
                       241.34
          455.37
 2
                       244.42
 3
           468.74
                       248.57
           481.75
                       253.76
```


Run No. 17

100 Points Equally Spaced

N:\Projects\0100-999\803S\Slopes\t13ps1a.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.003, June 2002 ** (All Rights Reserved-Unauthorized Use Prohibited) **************** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ************** Analysis Run Date: Time of Run: KPC Run By: Input Data Filename: N:\Projects\0100-999\803S\Slopes\t13ps1a.in N:\Projects\0100-999\803S\Slopes\t13ps1a.OUT Output Filename: Unit System: English Plotted Output Filename: N:\Projects\0100-999\803S\Slopesps1a.PLT PROBLEM DESCRIPTION: TT 60258, X-Sect 13-13'; Pseudostatic; Natural slope BOUNDARY COORDINATES 4 Top Boundaries 11 Total Boundaries X-Left Y-Left X-Right Y-Right Soil Type Boundary (ft) Below Bnd No. 240.00 1 1 2 310.00 2 314.00 2 3 4 313.00 2 2 5 240.00 108.00 6 3 3 7 130.00 150.00 8 3 180.00 3 9 10 220.00 11 220.00 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (deg) No. (pcf) (pcf) (psf) (deg) 1 130.0 130.0 300.0 30.0 Param. (psf) No. 0.00 0.0 Ω 2 130.0 130.0 38.0 400.0 0.00 0.0 1 3 135.0 135.0 700.0 32.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.50 Point X-Water Y-Water (ft) (ft) No. 404.00 222.00 1 800.00 222.00 Specified Peak Ground Acceleration Coefficient (A) = 0.300(g) Specified Horizontal Earthquake Coefficient (kh) = 0.150(q) Specified Vertical Earthquake Coefficient (kv) = 0.000(q) Specified Seismic Pore-Pressure Factor = 0.000 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

Along The Ground Surface Between X = 420.00(ft)and X = 470.00(ft)Each Surface Terminates Between X = 490.00(ft)

1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of

```
X = 560.00(ft)
                              and
  Unless Further Limitations Were Imposed, The Minimum Elevation
  At Which A Surface Extends Is Y = 0.00(ft)
  14.00(ft) Line Segments Define Each Trial Failure Surface.
  Restrictions Have Been Imposed Upon The Angle Of Initiation.
  The Angle Has Been Restricted Between The Angles Of -45.0
  And 15.0 deg.
   Following Are Displayed The Ten Most Critical Of The Trial
        Failure Surfaces Evaluated. They Are
        Ordered - Most Critical First.
         * * Safety Factors Are Calculated By The Modified Bishop Method * *
        Total Number of Trial Surfaces Evaluated = 1000
        Statistical Data On All Valid FS Values:
           FS Max = 2.543 FS Min = 1.299
                                                FS Ave =
                                                           1.678
           Standard Deviation = 0.196 Coefficient of Variation = 11.66 %
        Failure Surface Specified By 11 Coordinate Points
          Point
                     X-Surf
                               Y-Surf
           No.
                     (ft)
                                 (ft)
                                 240.16
            1
                     440.20
            2
                     453.82
                                243.40
            3
                     467.11
                                247.81
            4
                     479.97
                                253.34
            5
                     492.31
                                259.96
            6
                     504.03
                                 267.61
            7
                                276.24
                     515.06
            8
                     525.30
                                285.78
            9
                     534.68
                                296.17
           10
                     543.14
                                307.33
           11
                     545.12
                                310.47
        Circle Center At X = 409.27; Y = 400.02; and Radius = 162.83
              Factor of Safety
                    1.299
             Individual data on the
                                    11 slices
                       Water Water
                                      Tie
                                              Tie
                                                       Earthquake
                                                       Force Surcharge
                       Force Force
                                      Force
                                              Force
                                                       Hor Ver
                                                                    Load
Slice Width
            Weight
                        Top
                              Bot
                                      Norm
                                               Tan
                       (lbs) (lbs)
              (lbs)
                                              (lbs)
                                                      (lbs)
       (ft)
                                      (lbs)
                                                              (lbs)
No.
                                                                     (lbs)
              6500.5
                        0.0
                              0.0
                                        0.
                                                 0. 975.1
                                                               0.0
       13.6
 1
             17808.5
                                          0.
                                                  0. 2671.3
                                                                 0.0
       13.3
                         0.0
                                 0.0
                                                                          0.0
                                                  0. 3889.7
0. 4628.2
0. 4906.6
                                          0.
0.
                                                                 0.0
              25931.2
                         0.0
                                 0.0
 3
       12.9
                                                                          0.0
              30854.7
                         0.0
                                 0.0
 4
       12.3
                                                                 0.0
                                                                           0.0
                        0.0
                                          0.
 5
       11.7
              32710.5
                                 0.0
                                                                 0.0
                                                                          0.0
             31768.3
                        0.0
                                0.0
                                          0.
                                                  0. 4765.2
                                                                 0.0
 6
       11.0
                                                                          0.0
 ٠7
       10.2
             28426.6
                        0.0
                                0.0
                                          0.
                                                  0. 4264.0
                                                                 0.0
                                          0.
                                                  0. 1814.2
                                                                 0.0
                                 0.0
 8
              12094.5
                         0.0
                                                                          0.0
        4.7
                                                   0. 1505.8
0. 1405.7
 9
        4.7
              10038.7
                         0.0
                                 0.0
                                           0.
                                                                 0.0
                                                                          0.0
10
        8.5
              9371.5
                         0.0
                                 0.0
                                           0.
                                                                 0.0
                                                                          0.0
                                           0.
                                                       59.3
                         0.0
                                0.0
11
        2.0
               395.4
                                                   Ο.
                                                                 0.0
                                                                          0.0
        Failure Surface Specified By 11 Coordinate Points
          Point
                     X-Surf
                                Y-Surf
           No.
                     (ft)
                                 (ft)
                     440.20
                                240,16
            1
            2
                    453.84
                                243.33
            3
                    467.16
                                247.64
            4
                    480.07
                                253.06
                    492.48
            5
                                259.53
            6
                     504.30
                                267.03
            7
                     515.45
                                275.50
            8
                     525.86
                                284.87
            9
                     535.43
                                295.08
           10
                     544.12
                                306.06
                     547.08
           11
                                310.53
        Circle Center At X = 409.26; Y = 403.84; and Radius = 166.58
              Factor of Safety
                    1.300 ***
```

Failure Surface Specified By 10 Coordinate Points

Y-Surf

X-Surf

Point

```
No.
              (ft)
                          (ft)
    1
             442.73
                         242.12
    2
             456.30
                         245.55
    3
             469.53
                         250.14
    4
             482.30
                         255.87
    5
             494.53
                        262.69
    6
             506.11
                         270.55
    7
             516.97
                         279.38
    8
             527.02
                         289.13
    9
             536.19
                         299.71
   10
             543.94
                        310.43
Circle Center At X = 410.31; Y =
                                      399.29; and Radius = 160.48
      Factor of Safety
            1.312 ***
Failure Surface Specified By 11 Coordinate Points
  Point
           X-Surf
                       Y-Surf
                          (ft)
   No.
             (ft)
    1
             440.71
                         240.55
    2
            454.38
                        243.57
    3
            467.78
                        247.63
    4
            480.82
                         252.70
    5
            493.44
                        258.77
    6
            505.56
                        265.78
    7
            517.10
                         273.70
    8
             528.00
                         282.49
    9
             538.20
                         292.08
   10
             547.62
                         302.43
             554.10
                         310.74
   11
Circle Center At X =
                      408.26 ; Y =
                                    419.91 ; and Radius =
                                                            182.27
      Factor of Safety
            1.314 ***
Failure Surface Specified By 11 Coordinate Points
            X-Surf
  Point
                        Y-Surf
   No.
             (ft)
                         (ft)
   1
            441.72
                        241.34
    2
            455.37
                        244.42
   3
            468.74
                        248.57
    4
            481.75
                        253.76
    5
            494.30
                        259.95
    6
            506.33
                        267.11
    7
            517.76
                        275.20
   8
            528.52
                        284.16
   9
             538.54
                        293.94
   10
             547.76
                        304.47
            552.39
                        310.69
   11
Circle Center At X = 409.36; Y = 416.29; and Radius = 177.92
      Factor of Safety
           1.315 ***
Failure Surface Specified By 11 Coordinate Points
           X-Surf
  Point
                       Y-Surf
                         (ft)
  No.
             (ft)
            442.22
                        241.73
   1
   2
            456.07
                        243.78
   3
            469.60
                        247.38
   4
            482.63
                        252.50
            495.00
   5
                        259.06
   6
            506.55
                        266.97
   7
            517.12
                        276.15
   8
            526.59
                        286.46
   9
            534.83
                        297.77
  10
            541.74
                        309.95
  11
            541.92
                        310.37
Circle Center At X =
                      431.10 ; Y = 364.65 ; and Radius = 123.43
      Factor of Safety
            1.319 ***
Failure Surface Specified By 11 Coordinate Points
 Point
            X-Surf
                     Y-Surf
```

INFINITE SLOPE STABILITY ANALYSIS

The 2:1 slope is a proposed fill slope consisting of dense to very dense sands, DATA: silty sands and clayey sands.

Slope inclination, i, deg = 26.57

Soil Friction Angle, Φ' , deg. = 30

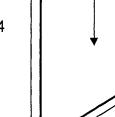
Soil Total Density, γ_t , pcf = 130 Soil Cohesion, c, psf = 300

Soil Bouyant Density, γ_b , pcf = 62.4 Depth of Interest, d, ft =

2 Horiz

4

ANALYSIS: per Figures 24.1, 24.2 and 24.3 of Lambe and Whitman, 1969


for a 4 ft deep slice of the given slope with unit width and length,

 $N' = \gamma_b$ ad cos i

 $T = \gamma_t$ ad sin i

d, feet =

Vertical

FS = $c + N' tan \Phi'$

FS = 1.84

REFERENCES:

- 1) Lambe and Whitman, Soil Mechanics, John Wiley and Sons, Inc., 1969
- 2) Day, Robert W., Geotechnical and Foundation Engineering, Design and Construction. McGraw-Hill, 1999

INFINITE SLOPE STABILITY ANALYSIS

CLIENT: Synergy PROJECT: Tentative Tract 60258

Santa Clarita

Los Angeles County, California JOB NO: 04-803S-4 DATE: 6/11/2004

Allan E. Seward Engineering Geology, Inc.

Geology and Geotechnical Consultants Figure F1.1

INFINITE SLOPE STABILITY ANALYSIS

DATA: The 2:1 slope is a proposed cut slope in Qt deposits consisting of sand,

conglomerate and sandy silts

Slope inclination, i, deg = 26.57

Soil Friction Angle, Φ' , deg. =

38

Soil Total Density, γ_t , pcf =

130

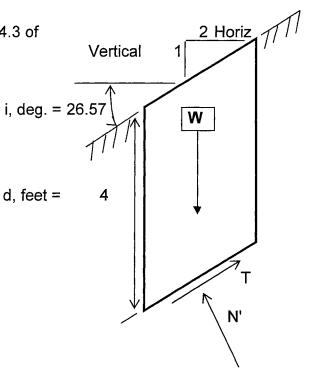
Soil Cohesion, c, psf =

400

4

Soil Bouyant Density, γ_b , pcf = 62.4

Depth of Interest, d, ft =


ANALYSIS: per Figures 24.1, 24.2 and 24.3 of Lambe and Whitman, 1969

for a 4 ft deep slice of the given slope with unit width and length,

$$N' = \gamma_b$$
 ad cos i

$$T = \gamma_t$$
 ad sin i

$$FS = \underline{c + N' \tan \Phi'}$$

REFERENCES:

- 1) Lambe and Whitman, Soil Mechanics, John Wiley and Sons, Inc., 1969
- 2) Day, Robert W., Geotechnical and Foundation Engineering, Design and Construction, McGraw-Hill, 1999

INFINITE SLOPE STABILITY ANALYSIS

PROJECT: Tentative Tract 60258	CLIENT: Synergy
Santa Clarita	
Los Angeles County, California	JOB NO: 04-803S-4
	DATE: 6/11/2004
Allan E. Seward Engineering Geology, Inc.	
Geology and Geotechnical Consultants	Figure F1.2

INFINITE SLOPE STABILITY ANALYSIS

<u>DATA:</u> The 2:1 slope is a proposed cut slope in TQs bedrock consisting of sandstone and conglomerate, siltstone, silty sandstone, sandy mudstone and mudstone.

Slope inclination, i, deg = 26.57

Soil Friction Angle, Φ' , deg. =

32

Soil Total Density, γ_t , pcf =

135

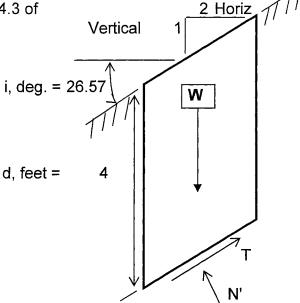
Soil Cohesion, c, psf =

700

Soil Bouyant Density, γ_h , pcf = 62.4

Depth of Interest, d, ft =

4

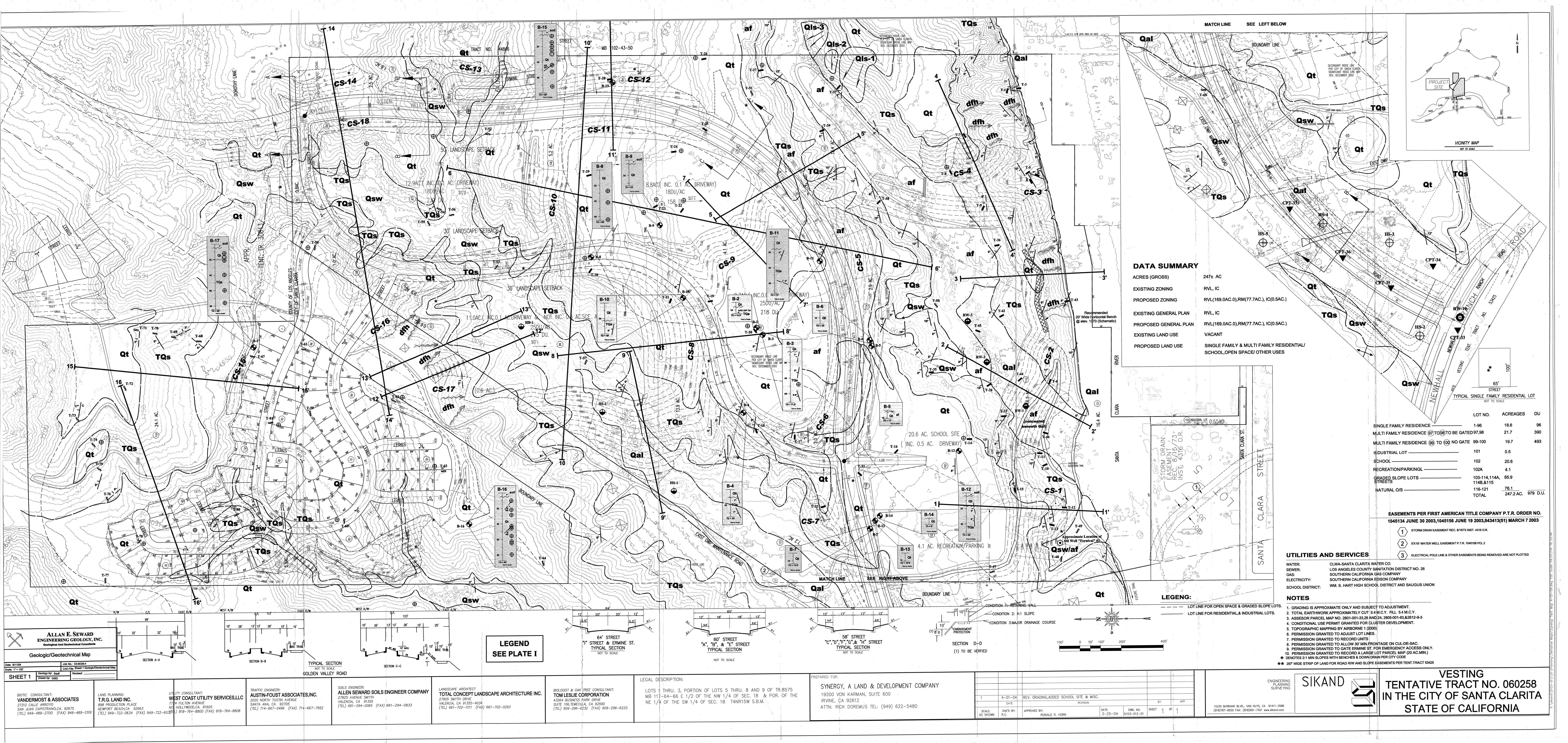

ANALYSIS: per Figures 24.1, 24.2 and 24.3 of Lambe and Whitman, 1969

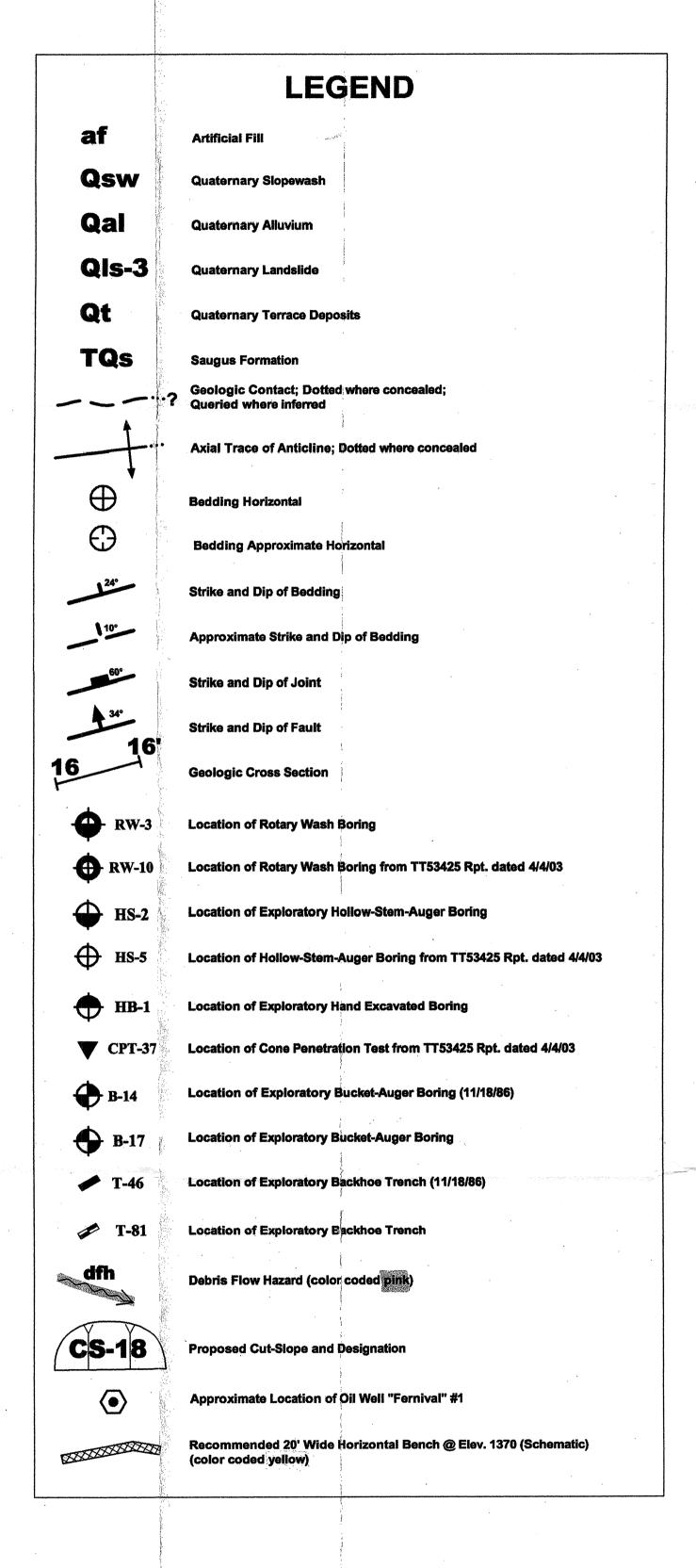
for a 4 ft deep slice of the given slope with unit width and length,

$$N' = \gamma_b$$
 ad cos i

$$T = \gamma_t$$
 ad sin i

$$FS = \frac{c + N' \tan \Phi'}{T}$$


REFERENCES:

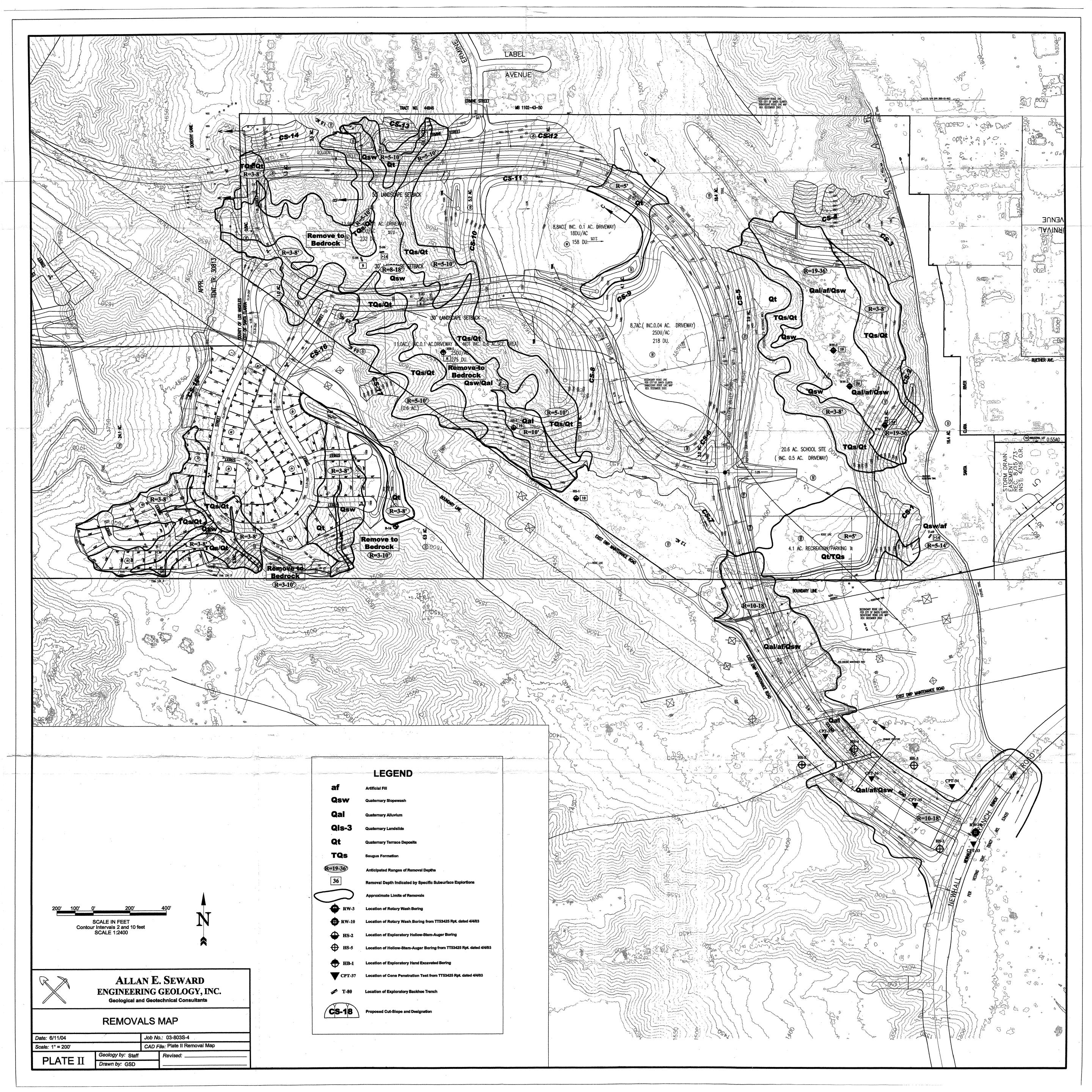

- 1) Lambe and Whitman, Soil Mechanics, John Wiley and Sons, Inc., 1969
- 2) Day, Robert W., *Geotechnical and Foundation Engineering, Design and Construction,* McGraw-Hill, 1999

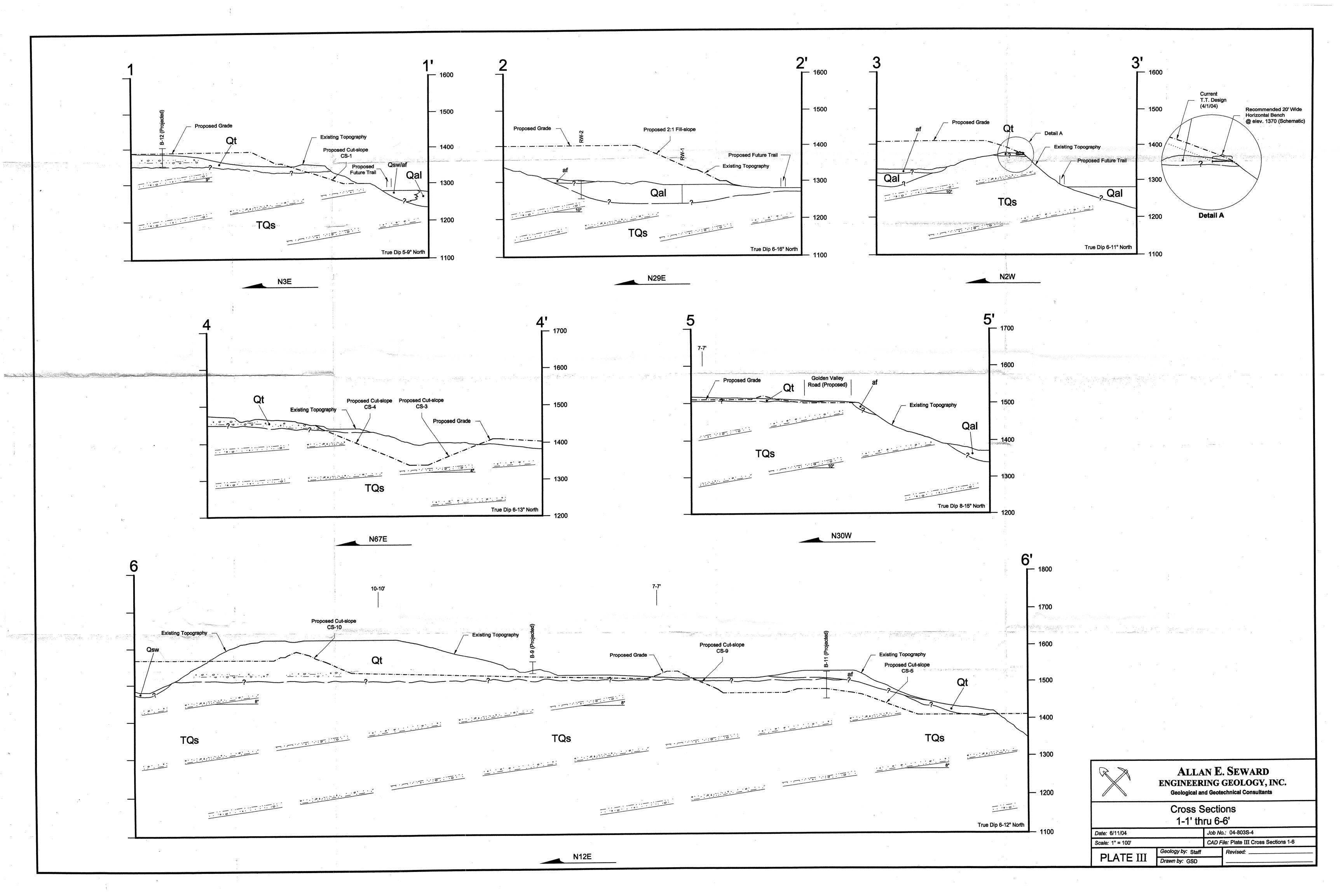
INFINITE SLOPE STABILITY ANALYSIS

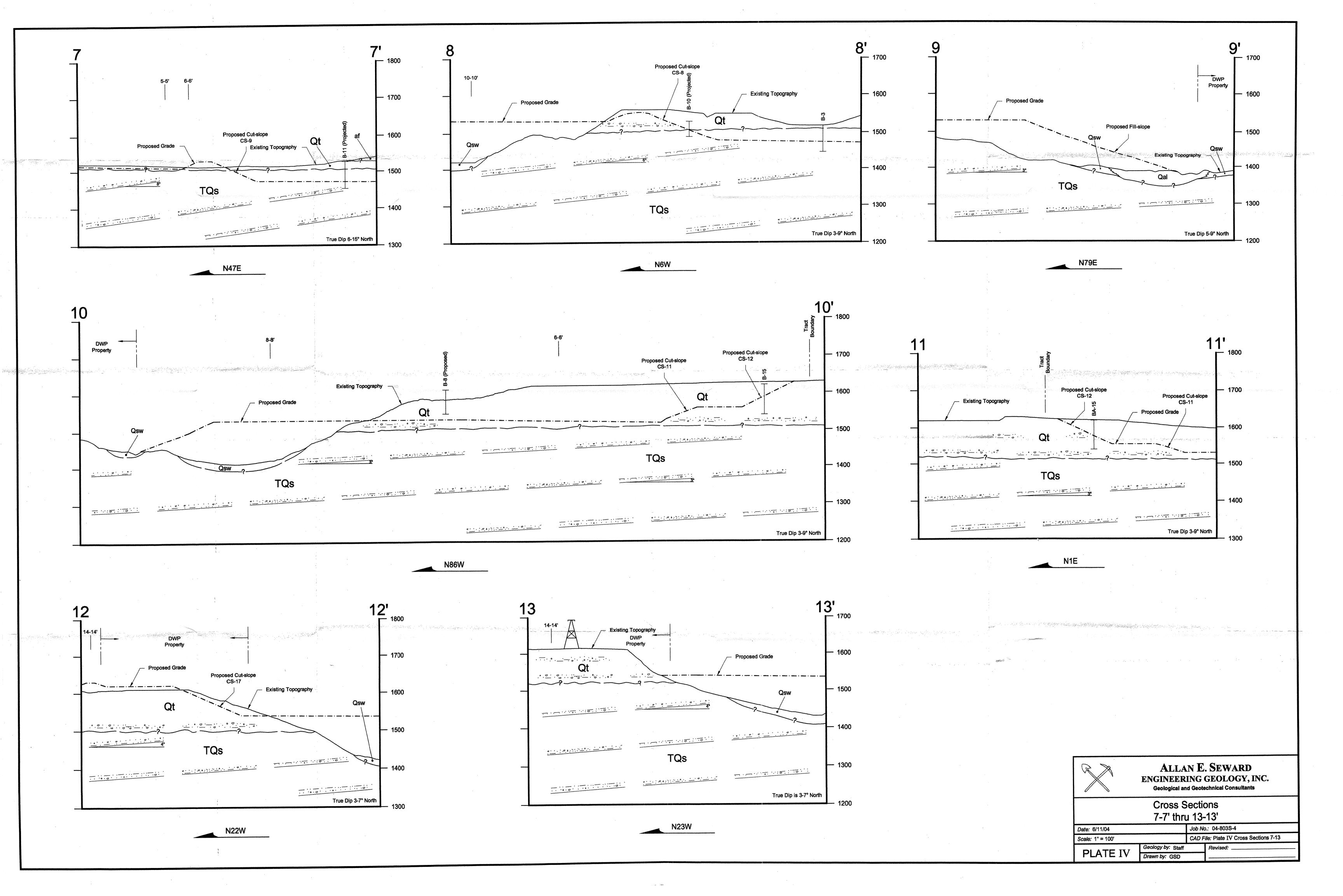
PROJECT: Tentative Tract 60258 Santa Clarita Los Angeles County, California	CLIENT: Synergy JOB NO: 04-803S-4
Los Angeles County, California	DATE: 6/11/2004
Allan E. Seward Engineering Geology, Inc. Geology and Geotechnical Consultants	Figure F1.3

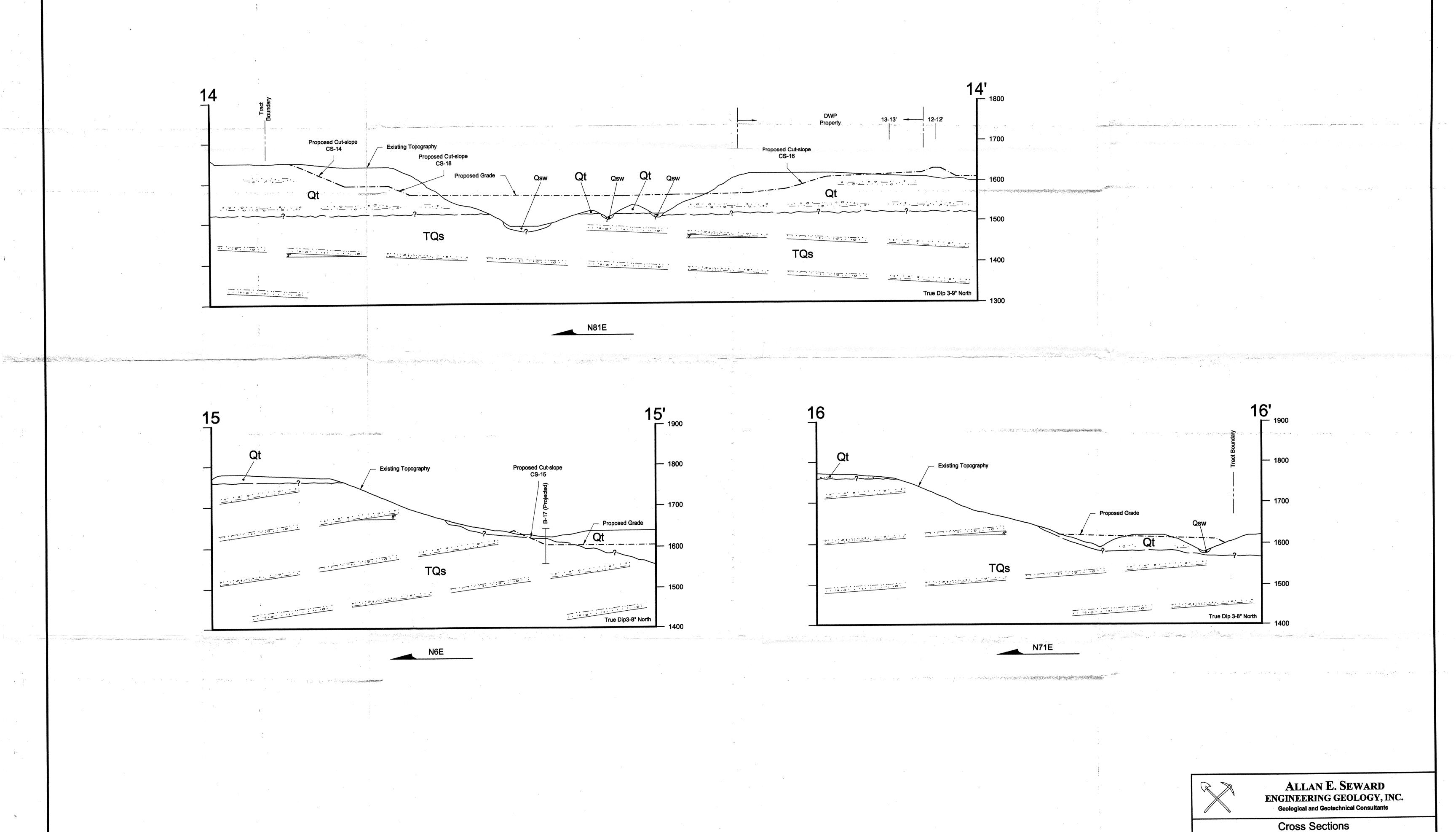
Appendix G

ALLAN E. SEWARD **ENGINEERING GEOLOGY, INC.**


Geological and Geotechnical Consultants


			٠	
LE	G	E	N	D


Date: 6/11/04	:	Job No	o.: 04-803S-4
Scale: na		CAD F	-ile: Plate I Legend
DIATET	Geology by: na		Revised:


PLAILI

Drawn by: GSD

14-14' thru 16-16'

Geology by: Staff
Drawn by: GSD

Date: 6/11/04

PLATE V

Job No.: 04-803S-4

CAD File: Plate V Cross Sections 14-16